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Abstract—SQL Injection (SQLI) is a pervasive web attack
where a malicious input is used to dynamically build SQL queries
in a way that tricks the database (DB) engine into performing
unintended harmful operations. Among many potential exploita-
tions, an attacker may opt to exfiltrate the application data. The
exfiltration process is straightforward when the web application
responds to injected queries with their results. In case the content
is not exposed, the adversary can still deduce it using Blind SQLI
(BSQLI), an inference technique based on response differences
or time delays. Unfortunately, a common drawback of BSQLI is
its low inference rate (one bit per request), which severely limits
the volume of data that can be extracted this way.

To address this limitation, the state-of-the-art BSQLI tools
optimize the inference of textual data with binary search.
However, this approach has two major limitations: it assumes a
uniform distribution of characters and does not take into account
the history of previously inferred characters. Consequently, the
technique is inefficient for natural languages used ubiquitously
in DBs.

This paper presents Hakuin - a new framework for optimizing
BSQLI with probabilistic language models. Hakuin employs
domain-specific pre-trained and adaptive models to predict the
next characters based on the inference history and prioritizes
characters with a higher probability of being the right ones.
It also tracks statistical information to opportunistically guess
strings as a whole instead of inferring the characters separately.

We benchmark Hakuin against 3 state-of-the-art BSQLI tools
using 20 industry-standard DB schemas and a generic DB. The
results show that Hakuin is about 6 times more efficient in
inferring schemas, up to 3.2 times more efficient with generic
data, and up to 26 times more efficient on columns with limited
values compared to the second-best performing tool.

To the best of our knowledge, Hakuin is the first solution
that combines domain-specific pre-trained and adaptive language
models to optimize BSQLI. We release its full source code,
datasets, and language models to facilitate further research.

I. INTRODUCTION

Modern web applications store data in databases (DB),
usually relational ones, and retrieve it upon request. To fetch
the data, a web application constructs an SQL query and sends
it to the Database Management System (DBMS), a system
responsible for managing the DB. The DBMS executes the
query, retrieves the data, and responds. To ensure flexibility,
web applications commonly allow user-supplied parameters
and use them to build the queries dynamically. However, if
done unsafely, i.e., the user input is directly inserted into an
SQL query without validation, this can leave the application
vulnerable to an attack called SQL Injection [1], [2], [3],
[4] (SQLI). To exploit the vulnerability, an attacker crafts

an input that, when embedded into the query, changes its
logic. Consequently, they may be able to arbitrarily read
and modify application data [5], [3], [1], [4], [2], bypass
authentication [3], [1], access DBMS’s file system [1], [2],
abuse DBMS’s networking capabilities [2], or even execute
code remotely [3], [1], [2].

To prevent SQLI, OWASP’s guidelines [6] recommend
validating user input and using parameterized queries or stored
procedures, where the user input is unambiguously recognized
as a parameter rather than a part of the SQL statement.
In addition, the guidelines advocate for abstraction layers
and frameworks (e.g., object-relational mapping) that aim to
assure safe and possibly automated query construction. Despite
these efforts, SQLI vulnerabilities remain a prevalent issue
in the contemporary web, being part of the third-ranking
Injection category in OWASP’s Top Ten in 2021 [7] as well
as accounting for 1789 CVEs assigned in 2022 [8].

Once a vulnerability is discovered, attackers can extract data
through various methods. Their first choice is to check if the
web application responds to injected queries with its data and
then read the data directly from the responses. If this is not an
option, the attacker can inject invalid queries, induce DBMS
error messages, and extract the data from them. However, this
method only works if the web application forwards the error
messages back to the attacker. Otherwise, the adversary can try
to abuse DBMS’s built-in networking capabilities to exfiltrate
the data through an out-of-band channel. If nothing works, the
attacker can still obtain the data with Blind SQLI (BSQLI) [3],
[1], [2].

In BSQLI [9], [10], [11], [5], [12], [13], [14], the at-
tacker injects a conditional query and infers its boolean value
by observing response differences [3], [2], [14] (e.g., the
HTTP status code) or measuring purposefully induced time-
delays [5], [3], [4], [2] (e.g., with the SLEEP function). This
allows the attacker to infer data by systematically testing all
possible values until the right one is found. For instance, the
attacker can determine the first character of a string by com-
paring it to all ASCII values and then repeat this process for
each subsequent character until the whole string is obtained.
However, this exhaustive search requires up to 127 requests per
character (RPC), which is time-consuming and generates a lot
of suspicious traffic. For example, to extract 1000 usernames
that are 10 characters long, it needs 1.28 million requests. If
a requests-response round-trip takes 500ms, the attack would
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take about half a week on average, which is plenty of time
for the defenders to detect and intervene with it. Even in case
the attack goes unnoticed, the time requirements can be higher
than what the attacker can afford. In other words, the efficiency
of the search algorithm determines the amount of data that can
be inferred with BSQLI.

To address this efficiency limitation, the state-of-the-art
BSQLI tools [15], [16], [17] adopt binary search [11], [10],
[13], [9], [14] as their main optimization technique. Instead
of comparing each value individually, they determine if the
right value lies within a specified range and gradually reduce
this range until the value is found. Binary search significantly
outperforms exhaustive search. However, when dealing with
textual data, binary search treats all characters equally, which
is not optimal for most text in DBs. This is because the
text is written in natural languages, where characters occur
with different frequencies (e.g., “a” is more common than
“x” in English). Additionally, characters form strings where
subsequent characters depend on preceding ones (e.g., “hell” is
more likely to be followed by “o” than by “x”). Binary search
ignores these factors, makes text inference unnecessarily slow,
and consequently lowers the chance of the attack succeeding.

BSQLI optimization is largely overlooked with most re-
search focusing on the prevention [18], [3], [19], [20] and
detection [18], [3], [21], [22], [23], [24], [25], [26] of SQLI
attacks as well as vulnerability testing [18], [3], [27], [28].
Roberto Salgado [9] suggests an optimization method that
constructs a list of possible values and infers the index of the
right one. Ruben Ventura [12] highlights the possibility of a
vulnerable web application responding with multiple different
responses, potentially leaking several bits of information at
once. A similar approach described by Alex Chapman [10]
combines response differences with time delays to infer mul-
tiple bits with a single request. These approaches focus on
general data and completely ignore the lingual nature of the
text in DBs. Pavel Sorokin [11] proposes using Huffman trees
to prioritize frequently used characters, but this approach only
considers characters in isolation, rather than in a sequence,
and therefore does not model the language sufficiently. Lastly,
Focardi et al. [14] optimize BSQLI with probabilistic binary
search, but they rely on a generic bigram model trained on
the Oxford dictionary, which only considers two-character
sequences and does not cover the domain-specific language
used in DBs, such as usernames.

Our research focuses on optimizing BSQLI inference of
textual data with probabilistic language models that are trained
on DB data and are therefore domain-specific. We utilize pre-
trained and adaptive N-gram [29] models to predict the next
characters and Huffman trees [30] to prioritize those that are
likely to be the right ones. To train DB schema models, we
collect SQL-related questions from Stack Exchange [31] and
extract millions of table and column names. To model DB
content, we use adaptive models and train them on the fly as
we infer the data. Aside from inferring the data character by
character, we use statistical information to opportunistically
guess whole strings.

We implement our methods in a new framework called
Hakuin. Hakuin abstracts away the optimization logic and
allows users to easily automate BSQLI attacks. To assess
its efficiency, we benchmark Hakuin against 3 state-of-the-
art BSQLI tools [15], [16], [17] on 20 industry-standard DB
schemas and a generic DB with 4 most common tables and
12 most common columns, each having 1000 rows filled with
publicly available real data. The results show that Hakuin
outperforms the second-best performing tool, being 5.98 times
more efficient in inferring DB schemas, up to 3.2 times more
efficient with generic data, and up to 25.9 times more efficient
on columns with limited values.

In summary, we make the following contributions:
1) Method - to the best of our knowledge, we are the first

to use domain-specific pre-trained and adaptive language
models and opportunistic string guessing to optimize
BSQLI.

2) Implementation - we implement our techniques in a
framework called Hakuin. The framework is easy to use
and allows users to effortlessly and efficiently automate
BSQLI attacks. We benchmark Hakuin against 3 state-
of-the art BSQLI tools in schema and content inference
and show that it significantly outperforms all of the tools
in both tasks. Hakuin is open-source and its codes are
available to the public [32].

3) Corpora and language models - we extract millions
of table and column names from Stack Exchange [31]
questions and use them to train several language models.
Again, the data is publicly available [32].

The rest of the paper is structured as follows. The back-
ground and related works can be found in Section II, the design
of Hakuin in Section III, evaluation and results in Section IV,
and finally, Section V concludes our work.

II. BACKGROUND AND RELATED WORKS

A. SQLI and BSQLI

The illustrative example in Figure 1 shows a vulnerable
web application that implements a simple search function-
ality. There are three different scenarios depicted: a benign
interaction, an SQLI attack, and a BSQLI attack. In the first
benign scenario (Figure 1(a)), a user searches for someone
by sending a request to the “/search” endpoint and pro-
viding the target user’s id as a parameter (step 1 ). The
application uses this parameter to dynamically build an SQL
query “SELECT ... WHERE id=1” (step 2 ). The DBMS
executes the query and returns the results (step 3 ), which the
application sends back to the user (step 4 ).

The problem arises when the application inserts the user-
supplied parameter directly into the query without proper vali-
dation, which can lead to SQLI. In such case (Figure 1(b)), an
attacker crafts a malicious payload “1 OR (1=1)” (step 1 ),
alters the query’s logic (step 2 ), and retrieves additional data
(step 3 and step 4 ). Note that aside from the usernames,
the adversary can obtain all data in all DB tables by injecting
UNION queries (see [1], [2], [3] for the details).
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GET /search?id=1 OR (1=1)
SELECT name FROM users 
WHERE id=1 OR (1=1)

["user1", "user2", ...]200 OK

1 2

34

(c) BSQLI

Fig. 1. An illustrative example showing a benign interaction with a web
application as well as SQLI and BSQLI attacks.

In the last BSQLI scenario (Figure 1(c)), the web applica-
tion does not expose the search results, but rather indicates
the search success with an appropriate HTTP status code
(step 4 ). The key difference here is that the attacker is
able to inject queries but cannot read the results as they are
not exposed. However, the HTTP response status codes are
available to the attacker and reflect the boolean values of
the injected queries. For example, because the adversary in-
jects “OR (1=1)”, which unconditionally resolves to logical
“true”, the application responds with “200 OK”. In contrast,
injecting “OR (1=2)” would resolve to “false”, leading to
a “404 Not Found” response. In other words, the attacker
can inject arbitrary queries between the parentheses and de-
duce the boolean results from the response codes.

To infer textual data, the attacker can select a character
and compare it to all possible values. In the example in
Figure 1(c), the adversary can determine whether the first
character of a username is “a” by injecting “(SELECT
substr(name,1,1) FROM users ...) = "a"” in
place of “(1=1)”. They can then iteratively test other values
until the character is found and repeat the process until the
whole username is extracted. This approach, called exhaustive
search, is inefficient as it requires up to 127 requests to infer
a single ASCII character.

B. BSQLI Optimization Techniques

The current industry standard for BSQLI optimization is
binary search [11], [10], [13], [9], [14]. This method be-
gins with a range of possible values for a single character
and divides it into two halves. A query is then injected
to determine which half the right character belongs to. For
example, if the query “(SELECT substr(name,1,1)

FROM users ...) < "n"” resolves to “true”, the char-
acter is in the lower half of the alphabet, otherwise it is in
the upper half. The process repeats until the range is reduced
to a single character, the right one. Unlike exhaustive search,
binary search requires only log2(127) = 7 requests to search
the whole ASCII range. Another equivalent approach is to
convert the character to its binary representation (e.g., with
MySQL’s BIN function) and use bitwise operations to infer
individual bits [12], [10], [9]. This approach is, in essence,
still a form of binary search, as the bitwise operations divide
the set of possible characters into two halves based on their
bit value at a given index. A downside of both methods is
that they treat all characters equally, which is not efficient for
natural language used ubiquitously in DBs. In contrast, our
method uses language models to predict the next characters
and Huffman trees to prioritize the most promising ones.

To optimize the search itself, BSQLI tools sometimes im-
plement character set narrowing [11], [12], [10], [13], [9], a
practice where the search range is reduced to a predefined set
of characters. This can speed up the inference of columns that
use only a subset of characters (e.g., password hashes consist
of hexadecimal digits). However, the character sets need to
be specified manually, which makes the technique hard to
automate. In addition, the sets need to be known in advance,
which is rarely the case. Our adaptive models, on the other
hand, learn the character distributions from inferred data and
therefore eliminate the need for user involvement.

Another possible optimization is to guess whole strings [14]
or to infer only the first character and then guess the rest [10].
String guessing can be useful in obtaining frequently used
table (e.g., “users”) and column (e.g., “id”) names as well as
data in columns that have only a few possible values (e.g.,
“products.category”). The downside of this technique is that it
introduces a miss penalty, making it hard to determine where
the potential benefits outweigh the costs. Another disadvantage
is that the guessable strings need to be known in advance. To
overcome these limitations, we keep track of inferred strings
and their statistics, which allows us to automatically identify
where guessing is likely to succeed and requires no prior
knowledge about which strings can be guessed.

Lastly, BSQLI is an I/O bound process where concurrency
can massively speed up the inference [11], [12], [10], [14].
Consequently, all new optimization techniques should be de-
signed with concurrency in mind. Our optimization method
can be parallelized on a per-string basis.

C. N-gram Language Models

The goal of a character-based language model is to learn the
probability distribution over strings, i.e., character sequences
wn = (w1, ..., wn), where wi denotes a character at position
i. The probability of a string is defined as:

P (wn) = P (w1)P (w2|w1)...P (wn|wn−1)

An N-gram [29] is a simplified language model that works
with character sequences of length N. To estimate the proba-
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bility of the following character, it only considers a history of
N − 1 last characters h = (wn−1, wn−2, ..., wn−N ) as:

P (wn|wn−1) ≈ P (wn|h)

These probabilities are learned during training, where the
likelihood of observed sequences is maximized according to:

P (wn|h) =
c((h,wn))∑
w c((h,w))

where c denotes the number of occurrences of a sequence.
Simply put, N-grams estimate the probability of the next
character based on the relative number of times it was observed
in a given context.

The high-order N-grams sometimes fail to produce prob-
abilities where their lower-order counterparts succeed. This
is because some longer sequences are not observed during
training but only their shorter parts are. For this reason, N-
grams of all orders up to N are combined into a single
variable-length N-gram1. To make a prediction, the sequence
is gradually shortened and the order decreased until the model
can be applied.

D. Related Works

Only a few studies relate to BSQLI optimization. Roberto
Salgado [9] suggests a method called bin2pos. Bin2pos con-
structs a list of possible characters, determines the right
character’s position in the list, converts its index to a binary
representation, and then infers it bit by bit. The key idea of this
approach is that the index can be represented with fewer bits
than the character itself. On the other hand, the length of the
binary representations can vary and needs to be determined
separately, which comes with a massive overhead. Ruben
Ventura [12] introduces lightspeed, a technique that uses
bitwise operations to infer several bits with a single request.
This approach relies on web application endpoints that respond
with more than two possible responses, essentially leaking
multi-bit information. A similar approach described by Alex
Chapman [10] takes advantage of combining response differ-
ences with purposefully induced time delays. While this multi-
bit inference reduces the number of requests, it relies on delays
that are unreliable and significantly increase the inference
time. Pavel Sorokin [11] proposes using statistical information
in combination with Huffman trees to prioritize frequently
used characters. While this approach considers the character
frequencies in a language, it does not take the history (i.e.,
previously inferred characters) into account. In addition, the
author mentions this method only as an idea that has not been
implemented or validated. Focardi et al. [14] optimize BSQLI
with probabilistic binary search and a generic bigram language
model. This approach can predict the next characters, however,
it only considers a single-character history. Additionally, the
model is trained on the Oxford dictionary, which only covers
formal English but not the domain-specific DB language
that includes data such as usernames. The authors [14] also

1A combined N-gram model is sometimes called an everygram.
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Fig. 2. The process of inferring a single schema character.

propose word-based probabilistic binary search optimization,
but this approach requires prior location of word boundaries
and relies on a pre-specified word dictionary. In summary,
the aforementioned solutions are either inefficient, work only
under specific conditions, introduce request-time trade-offs,
insufficiently model the language in DBs’ textual data, or rely
on prior knowledge. In contrast, our approach makes use of
domain-specific language models to predict the next characters
and Huffman trees to prioritize those that are more likely to be
the right ones. Additionally, we opportunistically guess whole
strings instead of inferring each character separately.

There are several BSQLI tools available to the security
community. SQLMap [15] is a versatile command line tool that
infers lengths of strings and the strings themselves with binary
search. It also tries to guess character sets of strings based on
the first inferred character as well as to guess common table
and column names. BBSQL [16] is a simple Python framework
that utilizes binary search to infer strings and assumes the
strings end when the search fails. Lastly, jSQL Injection [17]
is a GUI-based tool that uses bitwise operations to infer strings
and binary search to infer their lengths. These tools completely
ignore the language used in the textual data.

III. HAKUIN

Hakuin is a BSQLI optimization framework implemented in
Python. It uses pre-trained models to infer DB schemas (i.e.,
table and column names) and adaptive models for DB content
(i.e., rows of columns). The reason behind employing two
different modeling approaches is that the schemas are similar
across applications, while the content is mostly application-
specific.

A. Schema Inference Overview

Figure 2 shows how a single schema character is inferred.
First, a language model produces a likelihood distribution of
possible next characters based on the partially inferred string,
i.e., the history (step 1 ). The probabilities are then used to
construct a Huffman tree (step 2 ). The tree is searched and a
character is inferred (step 3 ). The newly obtained character
is then added to the history. This process is repeated until the
whole string is extracted.

B. Schema Language Models

DB schemas usually share a lot of similarities across ap-
plications, e.g., the “users” table and the “id” columns are
ubiquitous. To model a general schema, we collect table and
column names2 from Stack Exchange Data Dump [31] as
follows:

2We also collect database, owner, and server names and publish them to
promote further research. These corpora are not needed by Hakuin.
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1) We select all posts from Stack Overflow that have at
least one SQL-related tag (“sql”, “db”, or “database”)
and include all posts from Database Administrators.

2) We separate code from the posts, which is trivial because
it is marked with “<code>” tags.

3) We split the code into lines, select those that contain
at least one SQL keyword (“CREATE”, “UPDATE”,
“INSERT”, “CREATE”, “ALTER”, or “DROP”), and try
to parse3 them as separate SQL statements. The lines
that are not successfully parsed are ignored.

4) We extract table and column names from the statements.
If the four part naming4 convention is used, we take out
the tables and columns.

5) We remove duplicates on a per-question basis since they
refer to the same table or column.

6) DBMS define a set of characters that can be used in valid
object names and the others must be escaped. However,
it is a common practice among programmers to escape
even names that are valid and do not require it. Wherever
possible, we unescape such names and discard the rest.

7) We convert all names to lowercase. This normalization
is lossless as (most) DBMS are case-insensitive.

8) We clean up the data by removing invalid and non-
ASCII names programmatically and dummy names man-
ually. Because manual cleaning is tedious and time-
consuming, we focus only on tables that occur more
than 150 times and columns that occur more than 300
times.

This results in the creation of a corpus with 2M (295k unique)
table names and a corpus with 3.8M (718k unique) column
names. We use these corpora to train two variable-length five-
grams (see Section II-C) and use them to model table and col-
umn names separately. Our preliminary experiments showed
that increasing the order above 5 significantly increases the
space complexity while providing no performance gain.

The models predict the following character or a special end
of string (EOS) symbol. There are some nuances that need to
be considered when constructing SQL queries with EOS (see
Section III-G), but logically, EOS can be treated as any other
character. Consequently, inferring the length of a string only
requires extending the search space with one extra character.
This is much more efficient than inferring the length with
binary search in advance, which is what most of the other
methods rely on.

C. Searching Huffman Trees

Hakuin constructs Huffman trees [30] based on model
predictions and searches them to infer characters. The process
starts at the root node and a list of all leaf nodes of the left
subtree is made. A query (see Section III-G) is then injected
to determine if the right character is in the list. If it is, the
search moves to the left subtree, otherwise it moves to the right
subtree. The process continues until a leaf node is reached -

3SQL-metadata parser: https://pypi.org/project/sql-metadata/
4Four part naming: https://www.mssqltips.com/sqlservertip/1095/sql-server-
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Fig. 3. The process of inferring a single content string.

this node holds the right character. In case the character is
not present in the tree, the algorithm stops at the rightmost
leaf node. This situation arises when the character was not
previously observed in the given sequence during training, and
therefore the models do not predict it at all. Consequently,
the rightmost leaf node is the only exception that requires
an additional request to determine whether the search was
successful. If not, the remaining characters not present in the
tree are searched with binary search and the right character
is inferred. Huffman trees prioritize the most promising leaf
nodes as they have the shortest paths and thus require fewer
requests to infer the characters they represent.

It is possible to omit Huffman trees and search all characters
gradually in order of their predicted likelihood, however, this is
slower and turns into exhaustive search when the probabilities
are roughly equal. Huffman trees, on the other hand, are
balanced in this worst-case scenario and searching them results
in a much faster binary search.

D. Content Inference Overview

Hakuin infers DB content on a per-column basis. To find
the number of rows in a column, it starts with a default range
[0, 128) and injects a query (see Section III-G) to determine
if the value falls within the range. If not, it gradually extends
the range by a factor of two until it does. Lastly, it runs binary
search over this range and infers the number of rows.

When inferring column rows (i.e., strings), Hakuin either
guesses them in whole or it infers the strings character by
character using several strategies. Figure 3 depicts how a single
string is obtained. First, Hakuin decides whether to guess
strings (step 1 ). In case it does (step 2 ) and succeeds, the
correctly guessed string is used to emulate all strategies as
well as to train their models (step 3 ) and the process stops.
Otherwise, Hakuin falls back to the per-character inference
(starting at step 4 ), where it selects the most efficient strategy
and uses it to infer a single character (step 5 ). Again, the
character is used to emulate all strategies and train their
models (step 6 ). The per-character inference continues (at
step 4 ) until the EOS symbol is found and the whole string
is extracted.

E. Strategies

As previously mentioned, Hakuin employs several strate-
gies to infer content characters. The unigram and variable-
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length five-gram strategies use their models the same way
as described in the schema inference (see Section III-A and
Figure 2). The only difference is that the models are not
trained in advance but on the fly. Consequently, the more
data Hakuin infers, the more accurate they get. The five-
gram model recognizes patterns, while the unigram model is
context-independent and only learns the character probability
distribution, making it useful for dealing with random data
that lack patterns. The last strategy, binary search, is used as
a backup early on, when the models have not adapted yet.

The selection of strategies is based on their average RPC.
For this reason, Hakuin keeps track of the statistics and updates
them with every guessed string and inferred character. To
compute the values, Hakuin emulates all strategies, meaning
that it runs them as per usual, except without sending requests.
This is possible, because at this stage of the process (see
step 3 and step 6 in Figure 3), the right character is already
inferred (or guessed) and all requests can be substituted with
simple comparisons. This on-the-fly analysis allows Hakuin to
automatically choose the most suitable strategy.

F. String Guessing

To guess strings, Hakuin keeps the history of all previously
inferred strings and their counts, selects the most promising
ones, constructs a Huffman tree based on the counts and
searches it. Searching a string-based Huffman tree is con-
ceptually the same as searching a character-based tree (see
Section III-C), the only difference is that the injected queries
work with strings rather than characters (see Section III-G).

Guessing strings makes sense only when the benefit (the
requests saved with a successful guess) outweighs the cost
(the requests necessary to search the tree). To decide when
to try, Hakuin computes two values: êc, the expected number
of requests necessary if guessing is skipped (resulting in per-
character inference) and Êmin, the minimal expectation in case
guessing takes place (resulting in guessing and possibly per-
character inference). The first value is calculated as:

êc = lr

where l is the average length of previously inferred strings and
r is the average RPC of the currently best strategy. The second
value is determined through an iterative process where the
previously inferred strings are gradually added to a candidate
guessing set G (starting with the highest-count string) and
its expectation Ê(G) is calculated. The process stops when
the lowest expectation, Êmin = Ê(Gmin), is found. The
expectation is defined as:

Ê(G) = P (x ∈ G)t̂(G) + (1− P (x ∈ G))êc

where x is the right string and t̂ is the expected number of
requests necessary to search a Huffman tree. The probability
P (x ∈ G) is calculated based on the previously inferred
strings. The expectation for searching a Huffman tree is:

t̂(G) =
∑
g∈G

hgpg

where hg is the path length to the node with string g and pg
is its probability calculated on previously inferred strings.

Hakuin tries guessing strings from Gmin only when it is
expected to be more efficient than per-character inference, i.e
when Êmin < êc. However, columns with very long strings
have high êc which can make Hakuin guess strings even when
it is likely to fail. Therefore, Hakuin requires P (x ∈ G) >=
0.5 to prevent this issue.

G. Injected Queries

Listing 1 shows the types of queries Hakuin injects. A
selection of a single character can be seen in Lines 2-3.
Lines 6-7 determine whether the character belongs to a list of
possible values. Hakuin uses these queries with binary search
(see Section III-C and Section III-E) and to search Huffman
trees (see Section III-C). Lines 11-12 show a variation with
EOS included (see Section III-B). To guess strings, Hakuin
constructs string-based Huffman trees (see Section III-F) and
searches them with the queries in Lines 15-16. Lastly, Hakuin
determines the number of rows in a column with numerical
binary search (see Section III-D). Lines 19-20 are used to
check whether the number of rows falls within a range.

All of these queries are simplified and do not handle
problematic values, such as the non-printable characters. In
Hakuin’s implementation, we solve this by converting all
characters and strings to their hexadecimal representations and
treating them as raw blobs of data.

1 // select a character (refered to it as <x>)
2 Pseudo: x
3 SQL: substr(<column>, <idx>, 1)
4

5 // check if a character belongs to a list
6 Pseudo: x in [’a’, ’b’, ’c’]
7 SQL: SELECT instr("abc", <x>) FROM ...
8

9 // check if a character belongs to a list with EOS
10 // <x> resolves to "" when <idx> exceeds length
11 Pseudo: x in [EOS, ’a’, ’b’]
12 SQL: SELECT <x> == "" OR instr("ab", <x>) FROM ..
13

14 // check if a string belongs to a list
15 Pseudo: <s> in ["guess1", "guess2"]
16 SQL: SELECT <s> in ("guess1", "guess2") FROM ...
17

18 // check if the number of rows is in a range
19 Pseudo: 0 <= len(<column>) < 128
20 SQL: SELECT count(*)>=0 AND count(*)<128 FROM ...

Listing 1. Examples of the SQLite queries Hakuin injects. The queries are
written in a pseudo language for readability as well as in SQL.

IV. EVALUATION

We aim to answer three research questions:
1) RQ1: How efficient is Hakuin in inferring DB schemas?
2) RQ2: How efficient is Hakuin in inferring DB content?
3) RQ3: How does Hakuin’s performance change through-

out the inference process?
To address these questions, we evaluate Hakuin and 3 other
state-of-the-art BSQLI tools on two datasets - a schema dataset
and a generic DB.
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TABLE I
DESCRIPTIONS AND CHARACTER COUNTS OF THE GENERIC DB

COLUMNS

Data Description Chars
users.first name The most common American first names.

Half of them are male and half are female.
6k

users.last name The most common American last names. 6k
users.sex User’s sex. Half of the users are ”male”and

half are ”female”.
5k

users.address Addresses of American start-up companies.
An address consists of a street name and
number, city, state, and a zip code.

40k

users.username The most common usernames. 7k
users.password MD5 hashes of the most common passwords. 32k
users.email Email addresses generated using common

combinations of users’ first and last names.
45% of the addresses are provided by Gmail,
30% by Outlook, 10% by Yahoo, 10% by
Apple, and 5% by other providers.

21k

products.name Names of real products sold on Amazon. 127k
products.desc. Descriptions of real products sold on Amazon. 300k
products.cat. Categories of real products sold on Amazon.

There are 20 categories and they are distributed
unequally.

16k

posts.text Real Twitter posts. 95k
comments.text Real Reddit comments. 88k

A. Datasets

We construct the schema dataset from industry-standard DB
schemas on Database Answers [33] as follows:

1) We crawl the web page and collect all images.
2) We manually select 20 entity relationship diagrams

(ERD) and prioritize those with a larger number of
entities and attributes.

3) We use Tesseract5 to extract the names of entities and
their attributes from the images and manually correct all
mishandled characters.

4) We manually remove all unnecessary prefixes (“<ent
ity>_<attrib>” is replaced with “<attrib>” and
“ref_<attrib>” with “<attrib>”).

5) We merge all entities of the same name into a single ta-
ble. We remove duplicate attributes because all columns
in a table must be unique.

6) We insert the tables into an SQLite DB.
In total, the schema dataset contains 184 tables, 938 columns,
and 12388 characters.

Ideally, we would evaluate content inference on a real appli-
cation DB, however the data is confidential and unavailable.
As a way around, we construct a realistic generic DB from
4 most common tables and 12 most common columns in the
corpora described in Section III-B. Afterwards, we fill every
column with 1000 rows of publicly available data sourced from
security lists, disclosed application DBs, and public services6.
As of now, Hakuin only supports ASCII characters, therefore
we limit the data to ASCII values only. Lastly, we convert the
generic DB to SQLite format. Table I provides descriptions
and character counts of the columns in the DB.

Both datasets are available in Hakuin’s repository [32].

5Tesseract: https://pypi.org/project/pytesseract/
6The exact sources can be found in Hakuin’s repository [32]

B. Experiment Setup

We set up a local web application with two endpoints that
fetch data from the previously described SQLite DBs. Both
endpoints accept a parameter vulnerable to BSQLI and return
different HTTP status codes based on the query results. They
also keep track of the number of requests sent to them, which
allows us to objectively measure the number of requests neces-
sary for inferring the DBs. Aside from Hakuin, we benchmark
3 state-of-the-art BSQLI tools: SQLMap version 1.6.11.7-
dev [15], BBQSQL version 1.2 [16], and jSQL Injection
version 0.84 [17]. Both SQLMap and jSQL Injection start
the inference process with vulnerability scanning and DBMS
fingerprinting, which generates additional requests. To filter
these out, we reset the endpoint counters right before the actual
inference process begins.

C. Results and Discussion

1) RQ1 - Schema Inference: Table II presents the results
of the schema inference evaluation. As can be seen, Hakuin
significantly outperforms the other tools in this task. Hakuin
requires only 27123 requests to infer the schemas, whereas
SQLMap, BBQSQL, and jSQL Injection require 167882,
162240, and 212225 requests, respectively. To infer a single
schema character, Hakuin needs only 2.19 requests on average,
while SQLMap needs 13.55, BBQSQL needs 13.10, and jSQL
Injection needs 17.13. These numbers are surprisingly high
considering they rely on binary search or bitwise operations,
which require only 7 requests to search the whole ASCII
range. The high number of requests needed by BBQSQL and
jSQL Injection can be attributed to the inefficient implemen-
tation of their search algorithms, as they send unnecessary
requests and repeatedly infer the same information. The reason
behind SQLMap’s high RPC is that it uses an alternative
approach to infer DB schemas. DBMS often store SQL
statements that were used to create DB objects in the DB itself.
SQLMap infers these statements and extracts the table and
column names from them. This is useful in situations where
the attacker seeks to understand the DB constraints (e.g., the
primary keys) or to read the code of the stored procedures
they aim to exploit. However, inferring the table and column
names directly is much more efficient and in most cases
enough to dump the DB. Additionally, SQLMap and jSQL
Injection infer the lengths of strings in advance and BBQSQL
deduces the end of strings based on the search success. Both
approaches are significantly less efficient than prediction EOS
(see Section III-B), which is what Hakuin does.

Answer to RQ1: Hakuin infers DB schemas efficiently.
To infer a single schema character, Hakuin requires only 2.19
requests on average, which is 5.98 times less than what the
second-best performing tool needs.

2) RQ2 - Content Inference: Table III shows the results of
the evaluation done on the generic DB. It presents the average
RPC of the tools and the total number of requests required to
infer each column. We observe that some tools occasionally
produce incorrect data. Specifically, BBQSQL mishandles the
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TABLE II
THE RESULTS OF DB SCHEMA INFERENCE EVALUATION

Tool Requests RPC
Hakuin 27123 2.19
SQLMap 167882 13.55
BBQSQL 162240 13.10
jSQL Injection 212225 17.13

products.description and posts.text columns, where it stops
the inference process prematurely and retrieves only partial
strings. Meanwhile, jSQL Injection removes duplicates from
columns before inferring them. This results in a loss of
information, as the values are detached from their row indices
and therefore cannot be associated with the corresponding
entries in other columns. For instance, removing duplicates
from product.category quickly reveals all the categories, but
the information about which products belong to which cate-
gory is lost. The columns jSQL Injection invalidates this way
are users.first name, users.sex, users.address, products.name,
products.category, and comments.text. To avoid confusion, we
cross out the request counts of all invalidly handled columns.

As can be seen, the efficiency of Hakuin heavily depends
on the type of data it infers, ranging from 0.32 RPC to 5.75
RPC. The lowest RPC values, 0.32 and 0.43, are achieved
on users.sex and products.category columns. This is because
the columns have a limited number of possible values and
Hakuin correctly identifies the potential to guess whole strings
(see Section III-F) with a few requests. The performance on
the other columns is largely determined by the patterns they
exhibit. Columns users.address and users.email display high
volumes of recurring patterns (e.g., the names of countries or
mail providers) that Hakuin’s five-gram model learns to recog-
nize, resulting in 2.19 and 3.74 RPC respectively. Contrary to
the other columns, products.name, products.description, com-
ments.text and posts.text contain unstructured text but also ex-

hibit patterns that the model can learn, resulting in 3.87, 3.22,
3.91, and 4.3 RPC respectively. On the other hand, columns
users.first name, users.last name, and users.user name ex-
hibit few patterns, leading to 4.88, 5.33, and 5.75 RPC
respectively. Lastly, the benefit of using multiple models and
strategies is evident in the case of users.password. The MD5
hashes in the column appear random and have no patterns that
the five-gram model can learn. However, the unigram model
can at least learn the probabilistic distribution, i.e., the proba-
bility of hexadecimal digits being equal and the probability of
other characters being zero. The model essentially identifies
the effective character set which results in 4.28 RPC. Although
a similar performance can be achieved using binary search and
character set narrowing (see Section II-B), this approach is
hard to automate as it relies on prior knowledge (the user must
specify the character set) and only works well with uniformly
distributed characters.

SQLMap’s efficiency ranges from 6.42 to 8.30 RPC and
roughly approaches the theoretical limit of binary search, i.e.,
7 RPC. In contrast, the RPC of BBQSQL and jSQL Injection
spans from 7.48 to 13.3 and 7.69 to 13.47 respectively,
which significantly exceeds the expectation. Again, the poor
performance of BBQSQL and jSQL Injection is a result
of their inefficient implementation. Being the second-best
performing tool, SQLMap achieves 8.30 and 7.45 RPC on
users.sex and products.category respectively. In comparison,
Hakuin requires 25.9 and 17.4 times less requests to guess
the same data. The improvement over SQLMap on other
columns varies depending on the patterns and distributions
Hakuin can learn. The smallest and highest improvements
are observed on users.username and users.address, where
SQLMap achieves 7.98 and 6.92 RPC respectively. Hakuin
needs 1.4 times less requests to infer the first column and 3.2
times less requests to infer the second one.

TABLE III
THE RESULTS OF DB CONTENT INFERENCE EVALUATION. THE TABLE SHOWS THE RPC AND THE TOTAL NUMBER OF REQUESTS NECESSARY TO

INFER THE DIFFERENT COLUMNS OF THE GENERIC DB. INVALIDLY INFERRED COLUMNS ARE CROSSED OUT.
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Hakuin 4.88
(27899)

5.33
(32605)

0.32
(1602)

2.19
(86796)

5.75
(42185)

4.28
(137116)

3.74
(77910)

3.87
(490159)

3.22
(965824)

0.43
(6699)

4.3
(408165)

3.91
(345561)

SQLMap 8.19
(46820)
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8.30
(41502)

6.92
(274008)

7.98
(58569)

7.39
(236432)
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(148871)
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-
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jSQL
Injection
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-
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-
(331874)

13.47
(98850)

9.25
(296122)

9.93
(206674)

-
(1008019)

7.69
(2302206)

-
(3666)

8.43
(799995)

-
(759075)
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Answer to RQ2: Hakuin’s efficiency in inferring DB
content varies based on the type of data it holds. Its average
performance ranges from 0.32 to 0.43 RPC on columns with
limited possible values, which is 17.4 to 25.9 times more
efficient than the second-best performing tool. On generic
columns, where values rarely repeat, Hakuin achieves an
average RPC that spans from 2.19 to 5.75, and is 1.4 to 3.2
times more efficient than the second-best performing tool.
Overall, Hakuin outperforms all other tools on all columns
we tested.

3) RQ3 - Evolving Performance: Lastly, we measure how
Hakuin’s performance evolves as its models adapt during the
inference process. We compute the RPC on every column on
a per-row basis, calculate their averages over 20 rows, and
compare them with the 7 RPC baseline, i.e., the theoretical
limit of binary search. We plot the results in Figure 4 and sep-
arate some representative columns (Figure 4(a)) from the rest
(Figure 4(b)) to make the plots and the interpretation clearer.
Note that due to the multi-row averaging, the graphs begin
after the first 20 rows, i.e. once the models had some time
to adapt. Before that, while they are still largely inaccurate,
Hakuin emulates the model strategies, detects their low per-
formance, and falls back to binary search (see Section III-E).

In most cases, the graphs start below the baseline and
outperform binary search almost immediately within the first
20 rows. Being the only exception, the users.first name col-
umn starts slightly above the baseline but outperforms binary
search within the first 40 inferred rows as well. The users.sex
column starts with a sharp drop from 1.05 RPC to 0.25
RPC within the first 40 rows and then remains relatively
constant. This is because Hakuin is exposed to all possible
strings in this column early on and starts successfully guessing
them right away. The users.password column starts at 4.48
RPC, drops to 4.28 RPC within the first 40 rows, and stays
nearly constant afterwards. This demonstrates that the unigram
model needs less than 20 inferred MD5 hashes to accurately
model the uniform distribution of the hexadecimal digits. The
users.first name and users.address columns show a substantial
decline within the first 40 rows, followed by a slight downward
trend. The users.first name column starts at 7.07 RPC, drops
to 5.58 RPC, and gradually decreases to approximately 4 RPC.
Similarly, the users.address column drops from 4.94 RPC to
2.81 RPC and then slowly approaches 2 RPC. This is because
the five-gram model adapts quickly in the early stage of the
inference and continues to improve as it learns to recognize
more patterns. The users.username and users.email columns
also start with a steep decline within the first 40 rows, but
the subsequent performance remains within a constant range.
Specifically, the users.username column starts at 6.65 RPC
and then stabilizes around 6 RPC, and the users.email column
starts at 4.83 RPC and then stays around 3.5 RPC. This
suggests that the model learns all available patterns at the
beginning.

Answer to RQ3: Hakuin outperforms binary search on
(almost) all columns within the first 20 inferred rows. When
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Fig. 4. The evolution of Hakuin’s performance as its models adapt.

inferring columns with a limited number of possible strings,
Hakuin reaches minimal RPC within the first 40 rows and
maintains the performance afterwards. On generic columns,
Hakuin’s performance improves significantly within the first
40 rows and then, if the columns exhibit more patterns,
continues to improve gradually throughout the whole process.
In summary, Hakuin adapts in the early stage of the inference.
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V. CONCLUSION AND FUTURE WORK

BSQLI is an SQLI variant where an attacker infers a DB
based on response differences or purposefully induced time
delays. The current state-of-the-art BSQLI tools use binary
search as the primary optimization, however, this technique
is not optimal for natural language in databases as it treats
all characters equally and in isolation. To overcome this
limitation, we developed Hakuin, a new BSQLI optimization
framework that uses pre-trained and adaptive probabilistic
language models to predict the next characters and Huffman
trees to prioritize characters that are more likely to be the right
ones. Aside from inferring the data character by character,
Hakuin uses statistical information to opportunistically guess
whole strings. We benchmarked Hakuin against 3 state-of-
the-art BSQLI tools and showed that Hakuin is 5.98 times
more efficient in inferring schemas, up to 3.2 times more
efficient with generic data, and up to 25.9 times more efficient
on columns with limited values compared to the second-best
performing tool.

Hakuin currently targets only textual data but some tech-
niques, such as statistical modeling and opportunistic guessing,
can be applied to data of other types as well. Besides, while
the content models are adaptive and language-independent, the
schema models are trained on English data and are therefore
limited to English. Future work should focus on optimizing the
inference of non-English schemas and non-textual data. Lastly,
our approach overlooks the semantics of column names even
though it significantly affects the data they contain. We see a
research direction that utilizes language processing techniques
to understand column names and uses this information in
combination with public data repositories to improve BSQLI
even more.

Hakuin is open source and available to the public [32].
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