
ESPwn32: Hacking with ESP32 System-on-Chips
Romain Cayre

EURECOM
Biot, France

romain.cayre@eurecom.fr

Damien Cauquil
Quarkslab

Rennes, France
dcauquil@quarkslab.com

Aurélien Francillon
EURECOM

Biot, France
aurelien.francillon@eurecom.fr

Abstract—In this paper, we analyze the ESP32 from a wireless
security perspective. We reverse engineer the hardware and
software components dedicated to Bluetooth Low Energy (BLE)
on the ESP32 and ANT protocol on Nordic Semiconductors’ nRF
chips. Exploiting this, we then implement multiple attacks on the
repurposed ESP32 targeting various wireless protocols, including
ones not natively supported by the chip. We make link-layer
attacks on BLE (fuzzing, jamming) and cross-protocol injections,
with only software modifications. We also attack proprietary
protocols on commercial devices like keyboards and ANT-based
sports monitoring devices. Finally, we show the ESP32 can
be repurposed to interact with Zigbee or Thread devices. In
summary, we show that accessing low-level, non-documented
features of the ESP32 can allow, possibly compromised, devices
to mount attacks across many IoT devices.

Index Terms—Internet of Things, ESP32, wireless, protocols,
security, reverse engineering, cross-protocol attacks

I. INTRODUCTION

Recently, system-on-chips (SoC) are increasingly used, and
provide a large set of sophisticated functionalities, such as
wireless connectivity. In particular, they are largely deployed
in connected objects, making their security analysis fundamen-
tal. We need to understand better these complex systems to
identify and correct their vulnerabilities and explore new attack
surfaces related to their deployment. The security analysis of
software and hardware components involved in the wireless
connectivity, in particular, remains a major challenge today,
because their low level internals are often opaque and un-
documented. It impacts both wireless and embedded security
and mobilizes an interdisciplinary approach at the interface
between electronics, signal processing, and computer science.
From an embedded security perspective, the security of all
the applications developed on these modules depends on a
large set of complex software components, interconnected and
partially documented. From a wireless security perspective,
the analysis of these components is also fundamental, as they
implement increasingly complex protocol specifications with a
large set of features and real-time constraints. Understanding,
analyzing, and instrumenting their internals both facilitate the
analysis of wireless protocols but can also lead to new attack
vectors.

In this article, we present our analysis of the internals of the
Bluetooth Low Energy [5] stack embedded on ESP32, ESP32-
S3, and ESP32-C3 SoCs from Espressif Systems. These series

of SoCs are increasingly used today, as they provide a very
large set of features, including Wi-Fi, Bluetooth BR/EDR,
and Bluetooth Low Energy connectivity, for a very low cost.
It makes them especially attractive for developing connected
devices, and they are widely used by makers and hobbyists,
but also in some commercial products, including industrial
systems [25], [41]. We present an extensive overview of
these SoCs, from their global architecture to the software and
hardware components involved in BLE connectivity. We focus
on the reverse engineering process of the lowest layers of
the protocol stack, and we describe how the software and
hardware components can be diverted to implement a wide
set of advanced offensive techniques.

We demonstrate that these low-level components can be di-
verted from software to gain fine-grained control over the Link
Layer and the Physical Layer of the stack, allowing to build
powerful primitives from an offensive perspective without any
hardware modifications. We show the feasibility of injecting,
monitoring, and altering Link Layer traffic on the fly. We also
explore how the physical layer can be diverted at different
levels, from the modulators and demodulators configuration
to the radio calibration process. These techniques allowed us
to attack the BLE protocol itself but also various other wireless
protocols, such as ZigBee [42], MosArt [26], ANT+ [23]
or Riitek. These protocols are not natively supported by the
ESP32 SoCs but coexist in the same frequency band and
share some similarities in terms of modulation, allowing us
to interact with them using cross-protocol techniques. Finally,
we highlight serious security flaws in the design of several
proprietary protocols and exploit them to perform wireless
attacks targeting sensitive devices, such as wireless keyboards
or heart rate monitors.

In summary, we tackle the following challenges:

• We provide a fine-grained analysis of the proprietary
hardware and software components related to BLE com-
munications in ESP32 SoCs,

• We provide an instrumentation approach allowing to
manipulate the packet flow,

• We demonstrate how the radio components can be repur-
posed to attack non-native protocols,

• We reveal and exploit severe weaknesses in the design of
ANT and Riitek proprietary protocols.

II. RELATED WORK

In recent years, there has been a particular interest in the
analysis and hacking of SoCs, especially in wireless security.
Indeed, a close relationship exists between SoCs hacking and
the discovery of new offensive techniques. Numerous hacks
have been carried out in the context of applied research
on the security of wireless protocols and have allowed the
exploration of new attack strategies. Furthermore, these works
often push chips to the limits of their technical capabilities by
exploiting hardware architecture details or vulnerable software
implementations, thus opening new technical and scientific
perspectives.

These works often aim to solve concrete technical issues or
limitations. Indeed, the security analysis of wireless protocols
remains complex today and regularly confronts the limits
of existing analysis tools. For example, Software Defined
Radios (SDRs) offer genericity but remain expensive, require
consequent engineering work, and impose limits on their
reduced bandwidth and the latency associated with their de-
sign. In particular, protocols involving channel hopping algo-
rithms require real-time monitoring of the channel sequence
or wide band monitoring, requiring very fast or expensive
tooling. These limitations motivated the implementation of
dedicated hardware for Bluetooth BR/EDR and BLE [31].
Other examples include hardware tools developed as part of
the analysis of proprietary wireless keyboard protocols, such as
KeyKeriki [29], or the analysis of protocols based on the IEEE
802.15.4 specification [22] (e.g., Thread, ZigBee, Wireless
Hart) through the APImote [18].

System-on-Chip hacks have complemented these dedicated
tools, significantly decreasing the cost of analysis tools and
enabling new attack strategies. For example, the repurposing
of a hardware register on Nordic Semiconductor’s nRF24L01
chip by Travis Goodspeed to allow passive eavesdropping
on proprietary protocols in the 2.4 GHz band [20] was a
decisive step, allowing the development of a dedicated analysis
firmware [27] and the discovery of multiple vulnerabilities
targeting various wireless keyboards and mice [26]. Many
works have extended this hack to nRF51 and nRF52 chips,
allowing the development of offensive tools on various plat-
forms [7], [8], [13] and the discovery of critical low-level
attacks targeting the BLE protocol [9], [11]. Another example
is modification of ATMEL’s RZUSBStick firmware by Joshua
Wright to provide injection capabilities as part of his work on
the security of the ZigBee [40] protocol.

Other hacks have focused on reverse engineering and divert-
ing existing embedded protocol stacks. Mathy Vanhoef and
his tool modwifi allowed the development of low-level attacks
targeting the Wi-Fi [38] protocol. Similarly, the work of
Matthias Schulz et al. explored the hacking of Broadcom pro-
prietary Wi-Fi stacks [30]. The InternalBlue framework [24],
dedicated to Bluetooth and Bluetooth Low Energy, allowed
the analysis and instrumentation of Broadcom and Cypress
proprietary protocol stacks. This work has been a strong
basis for multiple offensive works [2], [3], [17]. We can

Fig. 1. ESP32-D0WDQ6 architecture (ESP32 series), from ESP32 data-
sheet [35], (version 4.2, section 1.6, figure 1, page 12).

also mention Matheus Garbelini and his Bluetooth Classic
OTA fuzzer based on ESP32, which initiated the reverse
engineering and modification of some parts of its Bluetooth
Classic stack. This work leads to the discovery of a serie of
vulnerabilities named BrakTooth [16]. Let us note that ESP32
SoCs in particular are very common in the IoT context, and
often used as an experimental platform in academic research
(e.g., RealSWATT [32], where ESP32 is used to implement a
prototype of a remote software-based attestation for embedded
devices).

Our work is a continuation of these SoC hacks by expand-
ing the reverse engineering of the ESP32 platform from an
offensive perspective and extending it to its ESP32-S3 and
ESP32-C3 variants. In particular, we focus on the analysis and
hacking of the proprietary embedded Bluetooth Low Energy
protocol stack and the hardware components involved in its
operation.

III. ESP32 HARDWARE ARCHITECTURE

A. Global Architecture

ESP32 systems integrate one or more processors, a radio
communication layer, one or more protocol stacks (Wi-Fi,
Bluetooth Low Energy, Bluetooth BR/EDR), a cryptographic
accelerator, and various peripherals allowing them to interface
with a large number of devices: displays, SD card, Ethernet
interface, etc. Figures 1 shows an example of a popular sys-
tem architecture, ESP32-D0WDQ6 (used in the development
boards ESP32-WROOM-32).

B. Instruction Set Architectures

ESP32 systems are currently based on two main Instruction
Set Architectures (ISA): XTensa from Tensilica (used in
ESP32 and ESP32-S series) and RISC-V (used in ESP32-
C, ESP32-H, and ESP32-P series). Espressif Systems recently
announced that future series will only use RISC-V ISA [15].

C. Memory layout

The main component of ESP32 is the Core System. It in-
cludes the processors, static Random Access Memory (SRAM),
and Read Only Memory (Mask ROM). An embedded or ex-
ternal flash memory is also used to store the user application’s
code and data.

According to the memory maps detailed in the data-
sheets [33]–[35], two memory regions are associated with
Mask ROM. They are respectively mapped at 0x40000000
and 0x3FF90000 in the case of ESP32-D0WDQ6, or
0x40000000 and 0x3FF00000 in the case of ESP32-C3
and ESP32-S3 series. These regions mainly store the low-
level software components of Wi-Fi, Bluetooth BR/EDR and
Bluetooth Low Energy protocol stacks, and various low-level
functions. They are fully integrated into the SoC and can’t be
modified.

The static RAM is divided into three main regions, respec-
tively named SRAM0, SRAM1, and SRAM2. The internal
RAM layout is split according to the Harvard architecture. An
Instruction Memory (IRAM) is used to store timing critical
code, and a Data Memory (DRAM) is used to store various
data segments. The IRAM is typically mapped in SRAM0,
while the DRAM is mapped in SRAM1 and SRAM2, which
are contiguous in memory. Similarly, the flash is also seg-
mented into a Data Memory (DROM), used to store constant
data, and an Instruction Memory (IROM), containing the code
of the user application and libraries provided by Espressif
Systems.

D. Wireless components

ESP32 series includes two main components dedicated to
wireless communications: the radio module and the wireless
MAC and baseband. The radio module provides the analog
frontend, including a 2.4GHz RF transmitter, a 2.4GHz RF
receiver, and a clock generator. Its use is shared between the
wireless MAC and baseband of Wi-Fi and Bluetooth protocols,
which are in charge of low-level operations, such as the
modulation and demodulation of baseband signals, packet flow
processing, and access control. Espressif Systems provides
few details about these components’ behavior and interactions
with the Core System. In the specific case of Bluetooth
baseband, the modulator and demodulator rely on a frequency
modulation named Gaussian Frequency Shift Keying (GFSK)
with a data rate of 1Mbps or 2Mbps, depending on the physical
layer in use.

IV. BLUETOOTH LOW ENERGY STACK REVERSE
ENGINEERING

A. Overall methodology

Our main objective was understanding how the Bluetooth
Low Energy stack is implemented on these SoCs, especially
how the low-level operations are managed. Indeed, a typical
BLE protocol stack is split into two main components: the
Host, which is in charge of the highest layers, providing
security and applicative features, and the Controller, handling
the lowest layers, e.g., the Physical and the Link Layer.

These two parts typically communicate using a standardized
interface named Host Controller Interface (HCI). Identifying
the specificities of the implementation of this stack is a
mandatory step to explore how they can potentially be diverted
to implement low-level attacks.

We combined a static analysis, mostly performed using the
Ghidra tool, with a dynamic analysis, by compiling exam-
ple codes related to Bluetooth Low Energy provided in the
Software Development Kits (SDKs) and modifying them to
validate our assumptions or gain a better knowledge of a given
functionality.

B. Overcoming static analysis challenges

Several issues had to be overcome to analyze the BLE stack
statically.

1) Analyzing XTensa instructions: First, while the ESP32-
C3 series are based on RISC-V ISA, based on an open standard
and natively supported by Ghidra, it is not the case for ESP32
and ESP32-S3 series, which are based on XTensa ISA. Ghidra
does not natively support this ISA, we used a Ghidra extension
developed by the community [14] to add partial support for
XTensa ISA. Thanks to this extension, we could compile code
examples, load the generated ELF files into Ghidra and analyze
them.

2) Extracting and exploiting the Mask ROM regions: The
second issue was linked to the fact that a significant part of
the stack, especially the low-level functions, are implemented
in the Mask ROM regions and are not included in the ELF
symbols. Hopefully, Espressif Systems provides a python
tool as part of its development environment [36], named
esptool.py [37], which allows extracting the content of Mask
ROM regions.

The extracted ROM memory regions can’t be used directly.
Although we know its memory location, we must identify the
functions and their addresses in the ROM. Fortunately, the
development environment relies on linker scripts containing
those functions’ addresses. A code snippet extracted from one
of these scripts is presented in listing 1.

/*
ESP32 ROM address table
Generated for ROM with MD5sum:
ab8282ae908fe9e7a63fb2a4ac2df013 ../../rom_image/prorom.elf

*/
PROVIDE (Add2SelfBigHex256 = 0x40015b7c);
PROVIDE (AddBigHex256 = 0x40015b28);
PROVIDE (AddBigHexModP256 = 0x40015c98);
PROVIDE (AddP256 = 0x40015c74);
PROVIDE (AddPdiv2_256 = 0x40015ce0);
PROVIDE (app_gpio_arg = 0x3ffe003c);
PROVIDE (app_gpio_handler = 0x3ffe0040);
PROVIDE (BasePoint_x_256 = 0x3ff97488);
PROVIDE (BasePoint_y_256 = 0x3ff97468);
PROVIDE (bigHexInversion256 = 0x400168f0);
PROVIDE (bigHexP256 = 0x3ff973bc);
PROVIDE (btdm_r_ble_bt_handler_tab_p_get = 0x40019b0c);

Listing 1: Code snippet extracted from linker scripts.

The ESP32 ROM segments are then loaded into memory
and placed at the correct addresses in Ghidra, and the symbols
related to them (extracted from the linker file) are added using
a custom script. It is then possible to decompile the ROM

Fig. 2. Bluetooth Low Energy ESP32 architecture.

code with function names and determine its interaction with
the application code.

C. BLE protocol stack analysis

Espressif Systems allows using two popular open-source
BLE stacks, NimBLE [4] and BlueDroid [1]. However, these
components only implement the Host layers: most of the BLE
protocol operations related to the low layers are implemented
in the functions stored in Mask ROM and interfaced with
NimBLE or BlueDroid using a virtual Host Controller In-
terface (vHCI). As a result, these components can’t directly
manipulate the PDU exchanged by the BLE protocol.

The low-level functions stored in Mask ROM are generally
called indirectly, using a set of arrays containing function
pointers stored in RAM and initialized at startup. This mech-
anism allows Espressif Systems to patch these functions by
embedding a new implementation in IRAM and redirecting
the control flow by replacing the function pointers. Figure 2
summarizes the architecture and the interconnections between
the application, the vHCI adapter embedded in the ROM, and
the Bluetooth Low Energy hardware controller embedded in
the SoCs.

This BLE hardware controller is not documented, but we
identified it by analyzing various registers’ addresses and
finding a pastebin referencing the DA14681 [28] component.
It has registers similar to those used on the ESP32, and we
deduced that it was very likely that Espressif had integrated
an existing controller but placed it at a different address
(0x3FF71200). We could reproduce similar observations on
ESP32-C3 and ESP32-S3 series, mapped at another address
(0x60031000).

We were thus able to observe in the code of the func-
tion r lld adv start instructions configuring the registers
BLE_ADVCHMAP_REG and BLE_ADVTIM_REG managing
respectively the configuration of the advertising channels and
the advertising interval, as shown in the figure 3.

We identified a shared memory area used to program and
exchange data with the hardware controller by analyzing sev-
eral low-level functions. This memory area, named Exchange
Memory, is used to store multiple structures specific to the
hardware controller, descriptors, which are intended to store

Fig. 3. Configuration of advertising intervals and channels in
r lld adv start().

the metadata linked to BLE PDUs (channel on which a PDU
was received, the signal level, and the type of PDU) and the
associated transmission and reception buffers. The protocol
stack uses it to indicate to the BLE hardware controller that
it has PDUs to send and also by the controller to transmit to
the protocol stack the received PDUs.

V. INSTRUMENTING AND HACKING THE STACK

Based on this analysis, we explored the feasibility of hack-
ing the stack to achieve multiple objectives:

• intercept, modify, and inject arbitrary PDUs in a BLE
communication,

• divert the hardware controller to interact with non-
natively supported protocols,

• divert the radio module to jam communications or build
a covert channel.

To achieve these objectives, we need to hijack the control
flow of low-level functions, manipulate the memory to alter
data structures and acquire direct control over the hardware
controller.

A. Low-level functions hooking

In subsection IV-C, we highlighted that low-level functions
are mainly called indirectly, using arrays of function pointers.
Some of these function pointers are dedicated to specific events
and act as callbacks. We can use this mechanism to redirect
the control flow to our own functions when a specific event
occurs, such as the reception of a BLE PDU, by replacing the
corresponding function pointer in the associated array. The
memory access is not protected, allowing us to set up hooks
at various places of the protocol stack. When a call occurs,
we can execute arbitrary code and transparently redirect the
control flow to the original function. This hooking technique
is illustrated in Figure 4.

B. Manipulating BLE communications

1) Interception of BLE PDUs: Thanks to this hooking tech-
nique, we could set up a hook on the main function processing
received PDUs. The regular behavior of this function relies on
access to the exchange memory, which contains the received
PDUs and their associated metadata. The hook also has read
and write access to this memory region. As a result, we can:

• monitor the received BLE PDUs by reading the corre-
sponding buffers,

• prevent the stack from processing a PDU by altering the
PDU header to set its size field to zero (empty PDU are
commonly exchanged during a BLE connection),

Fig. 4. Hooking of reception and transmission functions.

• forcing a specific stack behavior by altering the PDU
itself.

We also install a hook on the function called during a
PDU transmission, allowing it to intercept PDU before their
transmission to the hardware controller. As a result, we can
modify or even block them on the fly. Listing 2 presents one
of the hooks developed during this research.

/**
* _lld_pdu_data_send()

*
* This hook is called when the BLE stack sends a data PDU.

**/

int _lld_pdu_data_send(struct hci_acl_data_tx *param)
{
struct em_buf_tx_desc *p_desc = NULL;
uint8_t *ptr_data;
int i, forward=HOOK_FORWARD;
struct co_list_hdr *tx_desc;
struct em_desc_node *tx_node;

if (gpfn_on_tx_data_pdu != NULL)
{
/* Should we block this data PDU ? */
if (gpfn_on_tx_data_pdu(

0,
(uint8_t *)(p_rx_buffer + param->buf->buf_ptr),
param->length

) == HOOK_BLOCK)
{

/* Set TX buffer length to zero (won't be transmitted,
but will be freed later. */

param->length = 0;
}

}

/* Forward to the original function. */
return pfn_lld_pdu_data_send(param);

}

Listing 2: Hook allowing to alter a PDU transmission.

2) Injection of arbitrary PDUs: We can inject an arbitrary
PDU into a BLE connection by exploiting a vulnerability in the
lld_pdu_data_tx_push function. Indeed, this function is
normally called to push data PDU (linked to the L2CAP layer)
into a chained list of TX descriptors ready for transmission
by the hardware controller. However, as it does not check the
LLID field of BLE packets, we can divert it to transmit data
and control PDUs. We can allocate a transmission buffer and
the associated descriptor in the exchange memory, write our
arbitrary PDU into it and call the function. These operations

are time critical and directly manipulate the exchange memory,
which requires implementing them in the IRAM. This prevents
latency due to the flash access and requires to temporarily
disable interrupts. The implementation allowing this injection
is presented in listing 3.

void IRAM_ATTR send_raw_data_pdu(int conhdl, uint8_t llid,
void *p_pdu,int length,
bool can_be_freed)

{
struct em_buf_node* node;
struct em_desc_node *data_send;
struct lld_evt_tag *env = (struct lld_evt_tag *)(

(uint32_t)((uint32_t)llc_env[conhdl]+0x10) + 0x28
);

portDISABLE_INTERRUPTS();
/* Allocate data_send. */
data_send = (struct em_desc_node *)em_buf_tx_desc_alloc();

/* Allocate a buffer. */
node = em_buf_tx_alloc();

/* Write data into the allocated buf node. */
memcpy(
(uint8_t *)((uint8_t *)p_rx_buffer + node->buf_ptr),
p_pdu, length

);

/* Write information into our em_desc_node structure. */
data_send->llid = llid;
data_send->length = length;
data_send->buffer_idx = node->idx;
data_send->buffer_ptr = node->buf_ptr;

/* Call lld_pdu_data_tx_push */
pfn_lld_pdu_data_tx_push(env, data_send, can_be_freed);

env->tx_prog.maxcnt--;

portENABLE_INTERRUPTS();

}

Listing 3: Implementation of arbitrary PDU injection.

3) Evaluation: We evaluated our BLE PDUs manipulation
primitives by establishing BLE connections with various de-
vices and reproducing manually multiple BLE procedures.
We could perform these procedures reliably, from the dis-
covery process of applicative layers (e.g., GATT service and
characteristics) involving data PDUs to the version discovery
procedure, based on a specific type of control PDU named
LL_VERSION_IND.

This last procedure is especially interesting from an of-
fensive perspective because it allows retrieving the Bluetooth
Low Energy baseband vendor and software version. We can
turn it into a fingerprinting approach, allowing us to identify
the protocol stack used by a given device accurately. We
implemented a prototype on an ESP32-based smartwatch, T-
Watch 2020 from Lilygo, as illustrated by Figure 5. We can
then check if some vulnerabilities have been published and
inject the traffic allowing to trigger them, including malformed
ones. This operation could be automated, leading to a powerful
penetration testing tool that can compromise surrounding
devices automatically.

C. Interacting with non-natively supported protocols
We also explored the feasibility of diverting the hard-

ware controller to implement cross-protocol attacks. These

Fig. 5. Lilygo T-Watch running our custom firmware.

attacks aim to interact with wireless protocols which are
not natively supported by the transceiver but co-exist in the
2.4GHz frequency band and share some similarities in terms of
modulation. Previous works [6], [12] have partially explored
this research direction and highlighted the potential attack
surface opened by such attacks.

1) Building arbitrary GFSK reception and transmission
primitives: Implementing this kind of attack requires very
low-level control over the operations implemented in the BLE
hardware controller. In particular, we need to acquire direct or
indirect control over multiple operations performed while pro-
cessing received and transmitted packets, such as the whiten-
ing process, the integrity checking mechanism, the frequency
configuration, or the data rate. Altering these operations allows
diverting the hardware controller to build generic reception
and transmission primitives based on GFSK modulation. A
simplified representation of the reception primitive is presented
in Figure 6.

To implement such primitives on ESP32 SoCs, we diverted
the scanning and advertising modes of BLE protocol. These
modes receive and transmit advertising packets and are good
candidates to implement our cross-protocol primitives. Indeed,
they are less complex than the connected mode and do not
require establishing a BLE connection. Using an approach
similar to the one described in Subsection V-B, we set up
hooks on the functions related to the reception and transmis-
sion of advertising PDUs. We also hooked some configuration
functions, called at the initialization of the mode, and dedi-
cated to the hardware controller configuration. Thanks to these
hooks, we can alter the configuration parameters on the fly by
modifying control structures in the exchange memory.

Control structures contain a series of 16-bit registers, al-
lowing to program various low-level operations performed by
the hardware controller. We could identify and divert the role
of several of these registers. An annotated dump of a typical
control structure is presented in listing 4.

First, we configured the CNTL register to force the packet
format to Test Mode. According to BLE specification [5], this
mode is used for RF testing and allows the hardware controller
to remove multiple checks automatically performed on the
packet format.

09:02 // offset: 0 - CNTL
00:08
05:10 // offset: 4 - THRCNTL_RATECNTL
6a:5d
d6:a1
df:7c
be:d6 // offset: 12 - SYNCL
8e:89 // offset: 14 - SYNCW
55:55 // offset: 16 - CRCINIT0
55:00 // offset: 18 - CRCINIT1
00:00 // offset: 20 - FILTPOL_RALCNTL
25:00 // offset: 22 - HOPCNTL
0a:00 // offset: 24 - TXRXCNTL
30:80 // offset: 26 - RXWINCNTL
00:14 // offset: 28 - TXDESCPTR
00:00
30:00
00:00 // offset: 34 - LLCHMAP0
00:00 // offset: 36 - LLCHMAP1
00:00 // offset: 38 - CHMAP2
00:00 // offset: 40 - RXMAXBUF

Listing 4: Annotated dump of a control structure, extracted
from ESP32-C3 exchange memory.

We also modified SYNCL and SYNCW registers. These
registers are used to configure the access address, a 32-bit long
identifier at the beginning of BLE packets. As the hardware
controller uses it to identify the start of a BLE packet in the
demodulator output bit-stream, we can use it as a synchro-
nization word to detect a specific pattern. By configuring these
registers, we can synchronize on arbitrary preambles, including
the ones used by wireless protocols which are not natively
supported but relies on a similar physical layer. We also need
to extend the maximum size of the reception buffer by altering
the RXMAXBUF register, allowing us to extract packets up to
255 bytes.

Controlling the central frequency implies disabling the
channel hopping mechanism by altering the HOPCNTL reg-
ister. This register can also be used to select the BLE channel.
However, using this mechanism on its own to choose the
central frequency limits our primitives to the frequencies
overlapping BLE channels. We can circumvent this limitation
by altering another part of the exchange memory. Indeed, we
identified that a specific area contains an array that maps each
BLE channel to its central frequency by indicating an offset
(in MHz) from 2402MHz. We can use this mechanism by
configuring an arbitrary channel and remapping its associated
central frequency to the one we want to use.

The data rate can be configured on ESP32-S3 and ESP32-
C3 series using THRCNTL_RATECNTL. Indeed, these series
support both LE 1M and LE 2M physical layers, allowing the
selection of a data rate of 1Mbps or 2Mbps. Let us note that
this register is not present on the ESP32 series because it does
not support the LE 2M physical layer.

Finally, we need to disable both CRC checking and whiten-
ing. This is a key aspect of our reception primitive because
we want to receive arbitrary packets that won’t be valid
BLE frames. It can be done by manipulating two specific
bits in a global register, BLE_RWBLECNTL_REG, mapped at
0x3FF71200 for ESP32 series and 0x60031000 for ESP32-S3
and ESP32-C3 series. This register also contains a SYNCERR
field, indicating the maximum number of bit-flips the demodu-

GFSK demodulator Access address
synchronization

Packet extraction Dewhitening CRC checking

Bitstream
...10110100010010111100101011110101...

Bitstream
...10110100010010111100101011110101...

BLE Packet (whitened) BLE Packet (dewhitened) BLE PDU

Datarate Frequency Access Address Channel number

Baseband Signal

Packet format Packet maximum size

GFSK demodulator Access address
synchronization

Packet extraction Dewhitening
(disabled)

CRC checking
(disabled)

Bitstream
...10110100010010111100101011110101...

Bitstream
...10110100010010111100101011110101...

Non native packet

Datarate Frequency Access Address Channel number

Baseband Signal

Packet format Packet maximum size

Non native packet

BLE packet
reception process

Cross-protocol
reception primitive

Fig. 6. Simplified representation of the cross-protocol reception primitive.

lator will tolerate in the synchronization word. We can use this
feature to increase the probability of receiving packets from
other protocols.

Once this configuration step has been done, we can use an
implementation similar to the one described in Subsection V-B
to receive and transmit arbitrary GFSK-modulated data. We
obviously need to prevent the stack from processing received
packets, as they are not valid BLE packets and will probably
trigger a crash. On the transmission side, we can use a packet-
in-packet [21] strategy to control the modulated data fully.

2) Attacking ANT protocol:
a) Protocol overview: ANT protocol is a proprietary

protocol designed by Dynastream Innovations Inc., a division
of Garmin Canada Inc. It operates in the 2.4GHz ISM band
and is mainly used by sports-oriented devices, such as Heart
Rate Monitors or smartwatches. It can be used autonomously,
but two main variants are generally deployed in the wild:

• ANT+ protocol: used to transmit a small amount of data
regularly, a specialization of ANT protocol for interoper-
ability purposes. It establishes communication according
to a Master/Slave topology between sensor devices (such
as a Heart Rate Monitor) or devices intended to display or
process this information (such as a smartwatch). Due to
its wide deployment in sports and health-oriented devices,
it transmits potentially sensitive health-related data.

• ANT-FS (File Sharing) protocol: used for the trans-
mission of files between a device playing the role of a
file server (called Client) and a client (called Host). It is
generally used to transfer reports and histories between
sports-oriented devices and a USB dongle, but also for
updating the firmware (OTA) of devices (e.g., smart-
watches), making it critical from a security perspective.
b) Packet format: The manufacturer provides documen-

tation of the high layers of the protocol stack, but the low
layers are not documented. Therefore, we used reverse engi-
neering to determine the packet format and the physical layer.
We performed a black-box analysis of radio communications
between various devices. We also statically analyzed the ANT
protocol stack implementation integrated on the nRF52 chip

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Preamble | Device Number |
+-+
| Device Type | Trans. Type | Header | |
+-+ +
| Payload |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | CRC |
+-+

Listing 5: ANT Packet Format.

(so-called ANT SoftDevice). We determined that the ANT
protocol is based on a 1Mbps GFSK modulation, similar to
the LE 1M physical layer of Bluetooth Low Energy. The
packets have a fixed size of 16 bytes, their format is presented
in Listing 5. Packets are not encrypted nor authenticated by
default. Device Number field is a unique device identifier and
can be assimilated to an address. Device type indicates the type
of devices according to a set of predefined profiles (e.g., Heart
Rate Monitors, Speed Cadence, Blood Pressure) and defines
the payload format accordingly. Transmission Type defines
some characteristics linked to the communication channel. The
Header includes several fields describing the current packet,
such as the diffusion mode in broadcast or unicast or if the
packet is an acknowledgment. CRC is computed using CRC-
16 CCITT.

c) From Network Keys to preambles: ANT website and
specification [23] describes a feature named Network Key,
uniquely identifying a network and providing a measure of
security and access control. While ANT+ and ANT-FS keys
are public, the company charges a fee on demand to generate
a private network key.

A Network Key is a sequence of 8 bytes. We observed a
correlation between this Network Key and the 2-byte long
preamble value by analyzing ANT+ and ANT-FS commu-
nications over the air. The reverse engineering of the ANT
SoftDevice confirmed this assumption. We identified a function
in charge of validating the key and generating the preamble
using a simple XOR-based algorithm with predefined values.

Fig. 7. Experimental setup for malicious ANT+ packet injection.

A similar implementation is reproduced in appendix B1. As a
result, the Network Key mechanism cannot be considered a se-
curity measure. A custom preamble does not guarantee access
control, making ANT communications broken by design.2

d) Attacking ANT+ with cross-protocol primitives: In the
specific case of ANT+, the generated preamble is 0xa6c5,
and only one communication channel at 2457MHz is system-
atically used. We implemented a helper function allowing us
to switch from Little Endian (used by BLE) to Big Endian
(used by ANT). We can match ANT GFSK modulation by
configuring the data rate to 1Mbps. As our reception primitive
requires a 4-byte long synchronization word, we can apply a
two-step strategy to synchronize on an ANT+ communication:

• Scanning: we configure the frequency at 2457MHz and
use 0xaaaaa6c5 as synchronization word. It allows
matching a subset of ANT+ packets, which can then be
used to extract the Device Numbers.

• Sniffing: we modify the synchronization word to match
a specific communication by concatenating the 0xa6c5
preamble value with the targeted Device Number.

e) Evaluation: We implemented these cross-protocol
primitives on the ESP32, ESP32-S3, and ESP32-C3 series. We
evaluated them by eavesdropping on ANT+ communications
between two models of Garmin smartwatches (Garmin Fore-
runner 45 and Garmin Instinct 2) and a Heart Rate Monitor. We
extracted the heart rate from the packet flow in real time. We
also injected malicious packets into ANT+ communication, as
illustrated in Figure 7.

3) Attacking wireless keyboards proprietary protocols: Pre-
vious security-related works [13], [26], [29] have highlighted
the massive use of insecure proprietary protocols operating
in the 2.4GHz ISM band for wireless keyboards and mice.
Most of them are based on GFSK modulation using 1Mbps or
2Mbps data rate, making them potentially compatible with our

1The reverse engineering of ANT SoftDevice has been performed in com-
pliance with local laws and regulations. The code reproduced in the appendix
was written by a third person based on a specification provided in appendix A
to prevent copyright infringement.

2These security issues have been responsively disclosed to Garmin, who
decided to update the ANT website to better reflect the current state of ANT
security.

cross-protocol primitives. We tested this assumption on two of
them, MosArt and Riitek.

a) MosArt protocol: MosArt is one of the vulnerable
proprietary protocols analyzed by Marc Newlin in the context
of his research work on wireless keyboards and mice [26].
Based on a 1Mbps GFSK transceiver developed by MosArt
Semiconductors, this protocol is massively deployed in the
wild and used by many manufacturers (e.g., EagleTek, Anger,
Advance, itWorks), despite its intrinsically insecure design.
Indeed, it does not provide any security mechanisms and
mainly relies on security by obscurity. A typical frame format
is composed of a preamble (0xAAAA), a 4-byte long address,
a basic header, a payload, a CRC (CRC16-XMODEM), and
a constant postamble (0xFF). A basic XOR-based scrambling
algorithm is also applied. We implemented a set of helper
functions to deal with the scrambling and the endianness.
We also implemented MosArt reception and transmission
primitives using a synchronization strategy similar to the one
used for ANT+. We observed some bit flips in the reception
primitive, which may be linked to a small frequency offset or
a different modulation deviation. Despite this bit flipping, we
implemented a reliable wireless key-logger to read and decode
keystrokes transmitted between a ItWorks wireless keyboard
and its dongle. We also managed to inject arbitrary keystrokes
into the dongle.

b) Riitek protocol: We also reverse-engineered the pro-
prietary protocol used by Rii i8 Wireless Mini Keyboard
& Touchpad to communicate with its dongle and identified
serious flaws in the protocol design.3 This protocol, designed
by Riitek, is also based on a 1Mbps GFSK modulation, making
it compatible with our reception and transmission primitives.
It communicates using a single channel at 2426MHz and
provides no encryption or authentication mechanism. HID
scan codes are transmitted in plaintext over the air, making
it trivial to perform both eavesdropping and malicious packet
injection. A more detailed overview of the protocol can be
found in appendix C. We managed to implement reliable
reception and transmission primitives on ESP32, ESP32-C3,
and ESP32-S3 series and were able to implement a wireless
key-logger and inject keystrokes and mouse movements into
the communication.

c) Generalization to other proprietary protocols: Mul-
tiple works [13], [26], [29] have highlighted serious security
flaws in other wireless keyboards’ proprietary protocols, such
as Logitech Unifying or Microsoft. Further investigations
must be conducted to evaluate the feasibility of implementing
compatible cross-protocol reception and transmission primi-
tives. Enhanced ShockBurst seems widely used to implement
the lowest layers of these proprietary protocols and would
probably be compatible with our primitives since it relies
on 1 or 2Mbps GFSK modulation. Some specific technical
challenges, such as channel hopping algorithms or physical
layer differences (e.g., frequency deviation, data rate), could

3The reverse-engineering process was based on a black-box approach based
on RF communications monitoring. The vendor was notified of those security
issues in June 2021. As far as we know, no fixes have been released.

limit the applicability of our approach depending on the
targeted protocol and the support of the 2Mbps data rate by
the diverted stack.

4) Attacking 802.15.4-based protocols: Several major pro-
tocols of the Internet of Things are operating in the 2.4GHz
ISM band, such as Zigbee [42] or Thread, rely on IEEE
802.15.4 specification [22] for their lower layers. They rely
on an Offset-Quadrature Phase Shift Keying (O-QPSK) mod-
ulation, with 16 communication channels. We implemented
reception and transmission primitives for 802.15.4 protocols
by reusing WazaBee [12] attack. Indeed, this approach exploits
similarities between GFSK modulation used by BLE and O-
QPSK used by 802.15.4. Thus, it is possible to build an
equivalence table between the symbols used by these two
modulations and implement a set of conversion functions
allowing one to switch from one to the other easily. We could
implement a proof of concept on ESP32-S3 and ESP32-C3
series by sniffing and injecting valid ZigBee packets. WazaBee
attack relying on LE 2M physical layer, it is not possible to
implement it on ESP32 series, as they only support LE 1M
with 1Mbps data rate.

D. Diverting the radio module

During our analysis, we noticed the presence of several low-
level functions in Mask ROM, dedicated to the configuration of
the radio module, providing RF frontend to Wi-Fi, Bluetooth
BR/EDR, and Bluetooth Low Energy. We also explored the
feasibility of exploiting these functions to divert the radio
module itself.

1) Radio module calibration: The radio module imple-
ments a typical transceiver architecture based on I/Q up-and
downconversion. This architecture is known to be vulnerable
to I and Q branch mismatch in the analog front-end, a so-
called I/Q imbalance, which can be corrected using digital
calibrations techniques.

According to Espressif IoT Development Framework docu-
mentation [36], RF calibrations algorithms are implemented
on ESP32 SoCs. While Espressif does not provide low-
level details on the calibration techniques, the documentation
mentions that a full or partial calibration must be done before
using the radio module. When a full calibration is performed,
the calibration-related data are stored in Non-Volatile Storage
(NVS). It allows reusing them subsequently during partial
calibration to reduce calibration costs at startup.

2) Forcing a full calibration: A full calibration process is
automatically performed if the calibration data is missing or
unavailable. We can use this behavior to force a full calibration
at any time. It can be done by disabling the radio module,
flushing calibration data in NVS, and re-enabling the radio.
This process can be performed by calling various functions
the SDK exposes, as shown in listing 6.

3) Diverting the calibration process: Similarly to BLE low-
level functions, calibration-related functions are stored in Mask
ROM and called indirectly using an array of function pointers.
A reference to this array can be easily accessed from the appli-
cation code using a function named phy_get_romfuncs.

// Disable both Bluetooth and Radio Module
esp_bt_controller_shutdown();
// Flush calibration data
esp_phy_erase_cal_data_in_nvs();
// Enabling Radio Module to force a new calibration
esp_phy_enable();

Listing 6: Code snippet allowing to trigger a full calibration.

DIGITAL CHIP

RF FRONTEND

D/A

D/A

A/D

A/D

COMPUTE
RX I/Q

MISMATCH

CALIBRATION
SEQUENCE
(controlled)

I

Q

I

Q

Normal
loopback path

Diverted path

Fig. 8. Diverted calibration process.

As a result, we can re-use the hooking strategy presented in
subsection V-A to intercept the function calls and execute
arbitrary code.

Typical digital calibration techniques use a loopback be-
tween TX and RX path to estimate and compensate I/Q mis-
match [39]. According to the low-level functions we identified,
a similar strategy is implemented in ESP32 SoCs. Especially,
we found a function named rom_loopback_mode_en,
allowing us to enable or disable the loopback mode. We can
then hook this function and run an infinite loop, preventing
the loopback mode to be enabled and forcing the calibration
sequence (e.g., a sine wave) to be transmitted over the air.

a) Controlling the signal: We can then directly ma-
nipulate the signal transmitted over the air from the soft-
ware, acquiring fine-grained control over the transceiver. We
can control the signal frequency by disabling the hardware
control of the oscillator (using phy_dis_hw_set_freq)
and providing a frequency offset in MHz from 2400MHz
using set_chan_freq_sw_start. The switch time be-
tween two frequencies has been empirically evaluated using a
HackRF One (with a sample rate of 10 Msps) to 83µs. Simi-
larly, manipulating the parameters of ram_start_tx_tone
allows generating a wide variety of signals, from a basic sine
wave to invasive glitches (see appendix D).

b) Offensive use: This fine-grained control over the
transmitted signal allows the implementation of multiple at-
tacks, such as covert channels or jamming. The very fast
switching time, in particular, allows to implement powerful
jamming primitives. As a proof of concept, we implemented
a BLE jammer, transmitting a glitched signal and hopping
rapidly all along the three advertising channels, respectively, at
2402, 2426, and 2480MHz. This implementation is presented
in Listing 7. We managed to prevent the reception of any
advertisement packets by the surrounding devices. Since these
channels are needed both for advertising and for initiating
connections, jamming them simultaneously impacts most of
the protocol functionality.

while (jammer_enabled) {
// Configures the frequency to 2402 MHz (ch. 37)
set_chan_freq_sw_start(2,0,0);
// Generate a glitched signal
ram_start_tx_tone(1,0,10,0,0,0);
// Configures the frequency to 2426 MHz (ch. 38)
set_chan_freq_sw_start(26,0,0);
// Generate a glitched signal
ram_start_tx_tone(1,0,10,0,0,0);
// Configures the frequency to 2480 MHz (ch. 39)
set_chan_freq_sw_start(80,0,0);
// Generate a glitched signal
ram_start_tx_tone(1,0,10,0,0,0);

}

Listing 7: Code snippet allowing to jam the three advertising
channels simultaneously.

VI. DISCUSSIONS

In this article, we provided a large overview of the low-level
internals of a popular embedded BLE stack. We subverted
several software and hardware components to implement
advanced offensive techniques. We were able to implement
multiple offensive primitives, allowing complex wireless at-
tacks targeting the BLE protocol but also various wireless
protocols sharing physical layers similarities. The feasibility
of implementing such attacks on a cheap and popular SoC
underlines the urgency of analyzing and improving the secu-
rity of wireless communication protocols co-existing in the
2.4GHz ISM band.

Indeed, the increasing use of connected devices in our daily
life resulted in a chaotic deployment of heterogeneous wireless
technologies, co-existing in the same environments and using
similar physical layers. This co-existence introduces new se-
curity threats, such as cross-protocol attacks. In particular, the
massive deployment of Bluetooth Low Energy in connected
objects, smartphones, and laptops, makes it an ideal vector
for targeting sensitive communications relying on insecure
wireless protocols. Many proprietary protocols relying on
weak designs deployed in the wild induce a significant risk for
users. It exposes various commercial products to these attacks,
including wireless keyboards and health-oriented sensors. We
identified serious design weaknesses in the design of ANT
and Riitek protocols and were able to exploit them to conduct
eavesdropping and injection cross-protocol attacks targeting
commercial products.

Two main offensive scenarios could leverage these low-
level offensive capabilities. First, it is possible to implement
a cheap and mobile cross-protocol attack platform based on
an ESP32 SoC, similar to the Goodwatch project initiated
by Travis Goodspeed [19]. We started the implementation
of such a device during this research by writing a custom
firmware for an ESP32-based smartwatch intended for IoT
developers, the Lilygo T-Watch. Second, a connected device
embedding an ESP32 SoC could be compromised using a code
execution vulnerability or a malicious firmware update. It may
allow an attacker to conduct malicious operations, such as
a logical bomb triggering a massive jamming campaign or
spying on sensitive communications. While the deployment
of ESP32 SoCs within commercial devices seems relatively

limited today (although it does exist, including for industrial
solutions [25], [41]), it is particularly popular in the circle
of hobbyists. It provides many attractive features for IoT
developers and manufacturers.

VII. CONCLUSION

In this paper, we explored in depth the internals of the BLE
stack embedded in ESP32, ESP32-S3, and ESP32-C3 SoCs,
from its software architecture to its hardware components. We
showed the feasibility of diverting their low-level functional-
ities to implement a wide set of advanced wireless attacks.
We managed to manipulate the traffic processed by the Link
Layer of the BLE protocol, but also to impact other wireless
communication protocols which are not natively supported by
the SoCs, but share similarities in terms of the physical layer
and coexist in the same frequency band.

We also highlighted serious security risks related to the
chaotic deployment of proprietary wireless communication
protocols in the 2.4 GHz ISM band. In particular, we dis-
covered or confirmed critical security flaws in the design of
several of them, such as ANT, MosArt, and Riitek. We were
able to conduct high-impact attacks targeting real-life devices
manipulating sensitive data, such as wireless keyboards or
heart rate monitors. The attack surface exposed by these
insecure protocols is especially problematic, considering that
they may be attacked from Bluetooth Low Energy devices,
which are massively deployed in our daily lives. The proximity
of the physical layers used by these different protocols and
their coexistence within the same environments makes cross-
protocol attacks possible.

In future work, we plan to explore two complementary axes.
The low-level manipulation of Link Layer PDUs developed
during this research opens new offensive perspectives targeting
the BLE protocol. Implementing a fingerprinting approach for
BLE devices, in particular, allows us to consider the develop-
ment of an automatic vulnerability detection and exploitation
approach within these devices’ application and protocol stacks.
The second axis will focus on the generalization of cross-
protocol attacks leveraging the proximity of the physical layers
within heterogeneous wireless protocols, to better understand
and anticipate this new kind of threat.

ARTIFACTS

The artifacts related to this paper are released as open-
source softwares (MIT License) [10].

ACKNOWLEDGEMENTS

This work has been supported by the ENCOPIA ANR
MESRI-BMBF project (ANR-20-CYAL-0001). It has also
benefited from a state funding managed by the National
Research Agency (ANR) under the France 2030 program
project SuperviZ with the reference ANR-22-PECY-0008. We
warmly thank Romain Malmain for his precious help on the
blind implementation of algorithms related to ANT network
keys.

REFERENCES

[1] “Bluedroid presentation page,” https://source.android.com/docs/core/
connect/bluetooth, Android Open Source Project.

[2] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth
impersonation attacks,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), May 2020.

[3] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The knob
is broken: Exploiting low entropy in the encryption key negotiation
of bluetooth br/edr,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1047–1061.

[4] “Nimble github repository,” https://github.com/apache/mynewt-nimble,
Apache MyNewt.

[5] Bluetooth Core Specification, Bluetooth SIG, 07 2021, rev. 5.3.
[6] S. Bratus, T. Goodspeed, A. Albertini, and D. S. Solanky, “Fillory

of PHY: Toward a periodic table of signal corruption exploits and
polyglots in digital radio,” in 10th USENIX Workshop on Offensive
Technologies (WOOT 16). Austin, TX: USENIX Association, Aug.
2016. [Online]. Available: https://www.usenix.org/conference/woot16/
workshop-program/presentation/bratus

[7] D. Cauquil, “Radiobit, a BBC Micro:Bit RF firmware,” 2017, https:
//github.com/virtualabs/radiobit.

[8] ——, “Weaponizing the bbc micro bit,” https://media.defcon.org/DEF%
20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%
2025%20-%20Damien-Cauquil-Weaponizing-the-BBC-MicroBit-
UPDATED.pdf, 2017.

[9] ——, “You’d better secure your BLE devices or we’ll kick
your butts !” in DEF CON, vol. 26, 2018, available at https:
//media.defcon.org/DEFCON26/DEFCON26presentations/DEFCON-
26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf.

[10] R. Cayre, D. Cauquil, and A. Francillon, “”ESPwn32: Hacking
with ESP32 System-on-Chips” artifacts for 17th IEEE Workshop on
Offensive Technologies (WOOT’23).” Mar. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7786224

[11] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche,
and G. Marconato, “InjectaBLE: Injecting malicious traffic into
established Bluetooth Low Energy connections,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2021), Taipei (virtual), Taiwan, Jun. 2021. [Online]. Available:
https://hal.laas.fr/hal-03193297

[12] ——, “WazaBee: attacking Zigbee networks by diverting Bluetooth Low
Energy chips,” in IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2021), Taipei (virtual), Taiwan, Jun. 2021.
[Online]. Available: https://hal.laas.fr/hal-03193299

[13] R. Dawes, “LogiTacker GitHub Repository,” 2019, available at https:
//github.com/RoganDawes/LOGITacker.

[14] Ebiroll, “Github repository of xtensa ghidra extension,” https://github.
com/Ebiroll/ghidra-xtensa.

[15] N. F. for eeNews Europe, “Espressif moves exclusively to risc-
v,” https://www.eenewseurope.com/en/espressif-moves-exclusively-to-
risc-v/, 2022.

[16] M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and
E. Kurniawan, “BrakTooth: Causing havoc on bluetooth link
manager via directed fuzzing,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1025–1042. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/garbelini

[17] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and
E. Kurniawan, “Sweyntooth: Unleashing mayhem over bluetooth low
energy,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, Jul. 2020, pp. 911–925. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/garbelini

[18] T. Goodspeed, “Apimote ieee 802.15.4/zigbee sniffing hardware,” https:
//www.riverloopsecurity.com/projects/apimote/.

[19] ——, “Goodwatch project website,” https://kk4vcz.com/goodwatch/.
[20] ——, “Promiscuity is the nrf24l01+’s duty,” http://travisgoodspeed.

blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html.
[21] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and R. Speers,

“Packets in packets: Orson welles’ In-Band signaling attacks for
modern radios,” in 5th USENIX Workshop on Offensive Technologies
(WOOT 11). San Francisco, CA: USENIX Association, Aug. 2011.
[Online]. Available: https://www.usenix.org/conference/woot11/packets-
packets-orson-welles-band-signaling-attacks-modern-radios

[22] IEEE, “Ieee standard for low-rate wireless networks,” IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, April
2016.

[23] D. I. Inc., “Ant message protocol and usage, rev 5.1,” https://www.
thisisant.com/.

[24] S. Lab, “Bluetooth experimentation framework for broadcom and cy-
press chips.” https://github.com/seemoo-lab/internalblue, 2020.

[25] Moduino, “Moduino x series - industrial iot controller based on esp32,”
https://moduino.techbase.eu.

[26] M. Newlin, “MouseJack : White Paper,” in DEF CON, vol. 24, 2016,
available at https://github.com/BastilleResearch/mousejack/blob/master/
doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-
Into-Wireless-Mice.whitepaper.pdf.

[27] ——, “RFStorm nRF24LU1+ Research Firmware GitHub repository,”
2016, https://github.com/BastilleResearch/nrf-research-firmware.

[28] Renesas, “Da14681 datasheet,” https://www.renesas.com/us/en/
document/dst/da14681-datasheet.

[29] T. Schroeder and M. Moser, “Keykeriki resources,” 2010, available at
http://www.remote-exploit.org/articles/keykeriki v2 0 8211 2 4ghz/.

[30] M. Schulz, D. Wegemer, and M. Hollick, “The nexmon firmware anal-
ysis and modification framework: Empowering researchers to enhance
wi-fi devices,” Computer Communications, vol. 129, pp. 269–285, 2018.

[31] D. Spill, “Ubertooth One website,” 2012, http://ubertooth.sourceforge.
net/.

[32] S. Surminski, C. Niesler, F. Brasser, L. Davi, and A.-R. Sadeghi,
“Realswatt: Remote software-based attestation for embedded devices
under realtime constraints,” in CCS ’21: Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security.
ACM, November 2021, pp. 2890–2905, event Title: 2021 ACM
SIGSAC Conference on Computer and Communications Security.
[Online]. Available: http://tubiblio.ulb.tu-darmstadt.de/129997/

[33] E. Systems, “Esp32-c3 series datasheet, version 1.4,”
https://www.espressif.com/sites/default/files/documentation/esp32-
c3 datasheet en.pdf.

[34] ——, “Esp32-s3 series datasheet, version 1.6,” https://www.espressif.
com/sites/default/files/documentation/esp32-s3 datasheet en.pdf.

[35] ——, “Esp32 series datasheet, version 4.2,” https://www.espressif.com/
sites/default/files/documentation/esp32 datasheet en.pdf.

[36] ——, “Espressif iot development framework. official development
framework for espressif socs,” https://github.com/espressif/esp-idf.

[37] ——, “Espressif soc serial bootloader utility,” https://github.com/
espressif/esptool.

[38] M. Vanhoef and F. Piessens, “Advanced wi-fi attacks using commodity
hardware,” in Proceedings of the 30th Annual Computer Security
Applications Conference, ser. ACSAC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 256–265. [Online].
Available: https://doi.org/10.1145/2664243.2664260

[39] I. Vassiliou, K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis,
G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos,
J. Rudell, A. Yamanaka, S. Bouras, and I. Bouras, “A single-chip
digitally calibrated 5.15-5.825-ghz 0.18-um cmos transceiver for 802.11a
wireless lan,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp.
2221–2231, 2003.

[40] J. Wright, “Killerbee: Practical zigbee exploitation framework,” https:
//www.willhackforsushi.com/presentations/toorcon11-wright.pdf, 2009.

[41] Zerynth, “Industrial iot device - 4zerobox,” https://zerynth.com/products/
hardware/4zerobox.

[42] ZigBee Specification, https://zigbeealliance.org/wp-content/uploads/
2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf, Zigbee
Alliance, 2015.

https://source.android.com/docs/core/connect/bluetooth
https://source.android.com/docs/core/connect/bluetooth
https://github.com/apache/mynewt-nimble
https://www.usenix.org/conference/woot16/workshop-program/presentation/bratus
https://www.usenix.org/conference/woot16/workshop-program/presentation/bratus
 https://github.com/virtualabs/radiobit
 https://github.com/virtualabs/radiobit
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://doi.org/10.5281/zenodo.7786224
https://hal.laas.fr/hal-03193297
https://hal.laas.fr/hal-03193299
https://github.com/RoganDawes/LOGITacker
https://github.com/RoganDawes/LOGITacker
https://github.com/Ebiroll/ghidra-xtensa
https://github.com/Ebiroll/ghidra-xtensa
https://www.eenewseurope.com/en/espressif-moves-exclusively-to-risc-v/
https://www.eenewseurope.com/en/espressif-moves-exclusively-to-risc-v/
https://www.usenix.org/conference/usenixsecurity22/presentation/garbelini
https://www.usenix.org/conference/usenixsecurity22/presentation/garbelini
https://www.usenix.org/conference/atc20/presentation/garbelini
https://www.riverloopsecurity.com/projects/apimote/
https://www.riverloopsecurity.com/projects/apimote/
https://kk4vcz.com/goodwatch/
http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html
http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html
https://www.usenix.org/conference/woot11/packets-packets-orson-welles-band-signaling-attacks-modern-radios
https://www.usenix.org/conference/woot11/packets-packets-orson-welles-band-signaling-attacks-modern-radios
https://www.thisisant.com/
https://www.thisisant.com/
https://github.com/seemoo-lab/internalblue
https://moduino.techbase.eu
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/nrf-research-firmware
https://www.renesas.com/us/en/document/dst/da14681-datasheet
https://www.renesas.com/us/en/document/dst/da14681-datasheet
 http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
 http://ubertooth.sourceforge.net/
 http://ubertooth.sourceforge.net/
http://tubiblio.ulb.tu-darmstadt.de/129997/
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://github.com/espressif/esp-idf
https://github.com/espressif/esptool
https://github.com/espressif/esptool
https://doi.org/10.1145/2664243.2664260
https://www.willhackforsushi.com/presentations/toorcon11-wright.pdf
https://www.willhackforsushi.com/presentations/toorcon11-wright.pdf
https://zerynth.com/products/hardware/4zerobox
https://zerynth.com/products/hardware/4zerobox
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

APPENDIX

APPENDIX A
ANT NETWORK KEY ALGORITHMS SPECIFICATION

The algorithm is split into two main steps:
• the key validation, allowing to check if the key is valid
• the preamble derivation, allowing to generate a two-byte long preamble from the key

The key is considered valid if a value derived from the key equals zero. This value comprises a series of expressions linked
to the key, which are then combined using a bit-wise or operator.

• The first expression takes the 3rd byte of the key, applies a mask of value 0xec using a bit-wise and operator, then is
xored with value 0x20

• The second expression takes the 3rd and 4th bytes of the key, xor them together, applies a mask of value 0x3f using a
and bitwise operator, then is xored with value 0x1a

• The third expression takes the 3rd, the 4th, and the 5th bytes of the key, xor them together, applies a mask of value 0xd7
using a bit-wise and operator, then is xored with value 0x47

• The fourth expression takes the 3rd, the 4th, and the 5th and the 6th bytes of the key, xor them together, applies a mask
of value 0xdb using a bit-wise and operator, then is xored with value 0x11

• The fifth expression takes the 3rd, the 4th, the 5th, the 6th, and the 7th bytes of the key, xor them together, applies a
mask with value 0x79 using a bit-wise and operator, then is xored with value 0x50

• The sixth expression takes the 3rd, the 4th, the 5th, the 6th, the 7th, and the 8th bytes of the key, xor them together,
applies a mask of value 0xf7 using a and bit-wise operator, then is xored with value 0x93

• The seventh expression takes the 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th bytes of the key, xor them together, applies a mask
of value 0xbe using a bit-wise and operator, then is xored with value 0x36

• The last expression takes every byte of the key, xor them together, applies a mask of value 0xef using a bit-wise and
operator, then is xored with value 0x8f

If the key is valid, the preamble is then generated by generating two bytes derived from the key:
The least significant byte is formed by combining several expressions using a bit-wise or operation:
• the first expression takes the 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th bytes, xor them together, and applies a mask with value

0x41 using a bit-wise and operator
• the second expression takes every byte of the key, xor them together and applies a mask of value 0x10 using a bit-wise

and operator
• the third expression takes the 3rd, 4th, and 5th bytes of the key, xor them together and applies a mask of value 0x28

using a bit-wise and operator
• the fourth expression takes the 3rd, 4th, 5th, 6th, and 7th bytes of the key, xor them together and applies a mask with

value 0x86 using a bit-wise and operator
the most significant byte is formed by combining several expressions using a bitwise or operation:

• the first expression takes the 3rd, the 4th, the 5th, the 6th, the 7th, and the 8th bytes, xor them together, and applies a
mask of value 0x08 using an and bitwise operator

• the second expression takes the 3rd and the 4th bytes of the key, xor them together, and applies a mask of value 0xc0
using an and bit-wise operator

• the third expression takes the 3rd byte of the key and applies a mask of value 0x13 using an and bit-wise operator
• the fourth expression takes the 3rd, the 4th, the 5th, and the 6th bytes of the key, xor them together and applies a mask

of value 0x24 using a bit-wise and operator

APPENDIX B
ANT NETWORK KEY ALGORITHMS INDEPENDENT IMPLEMENTATION

#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <stdbool.h>

// We assume the CPU is running in little-endian mode.

// Useful structures
struct key {

union {
uint8_t bytes[8];
uint64_t raw;

};
};

struct key_preamble {
union {

struct {
uint8_t low;
uint8_t high;

};
uint16_t raw;

};
};

// Magic value tables

// Validation function
static uint8_t validate_xor_table[8] = {0x20, 0x1a, 0x47, 0x11, 0x50, 0x93, 0x36, 0x8f};
static uint8_t validate_and_table[8] = {0xec, 0x3f, 0xd7, 0xdb, 0x79, 0xf7, 0xbe, 0xef};

// Preamble gen function
static uint8_t preamble_xor_key_table[8] = {0xfe, 0xff, 0x1c, 0x7c, 0xfc, 0x0c, 0x04, 0x3c};
static uint8_t preamble_and_table[8] = {0x41, 0x10, 0x28, 0x86, 0x08, 0xc0, 0x13, 0x24};

// Validate the key
static bool is_valid_key(struct key k) {

// Xor index variables
const uint8_t xor_start_offset = 2;
uint8_t nb_xor = 1;

// Key as bytes
uint8_t* k_b = k.bytes;

uint8_t k_deriv = 0;
uint8_t tmp;

for (uint8_t i = 0; i < 8; ++i) {
tmp = 0;
// Xor key bytes
for (uint8_t j = 0; j < nb_xor; ++j) {

if (j < 6) {
tmp ˆ= k_b[xor_start_offset + j];

} else if (j == 6) {
tmp ˆ= k_b[1];

} else {
tmp ˆ= k_b[0];

}
}

// And op
tmp &= validate_and_table[i];

// Xor op
tmp ˆ= validate_xor_table[i];

k_deriv |= tmp;
++nb_xor;

}

return k_deriv == 0;
}

// Generate the key's preamble
// Precondition: the key should be valid
static uint16_t gen_key_preamble(struct key k) {

struct key_preamble k_p = {0};

// Key as bytes
uint8_t* k_b = k.bytes;

uint8_t tmp = 0;
uint8_t tmp2;

for (uint8_t i = 0; i < 8; ++i) {
tmp2 = 0;
if (i == 4) {

k_p.low = tmp;
tmp = 0;

}

for (uint8_t j = 0; j < 8; ++j) {
if (preamble_xor_key_table[i] & (1 << j)) {

tmp2 ˆ= k_b[j];
}

}

tmp2 &= preamble_and_table[i];
tmp |= tmp2;

}

k_p.high = tmp;

return k_p.raw;
}

int main() {
struct key k;

printf("Key: ");
assert(scanf("%lx", &k.raw) == 1);
printf("\n");

if (is_valid_key(k)) {
uint16_t k_preamble = gen_key_preamble(k);

printf("The provided key is correct, and the corresponding preamble is: 0x%x\n", k_preamble);
} else {

printf("Error: invalid key\n");
return 1;

}

return 0;
}

APPENDIX C
RII I8 WIRELESS MINI KEYBOARD & TOUCHPAD PROTOCOL OVERVIEW

A. Packet and payload formats

TABLE I
PACKET FORMAT

Preamble Address Unknown Seq. number Payload CRC
0x000000AA 5 bytes 4 bits 4 bits variable 2 bytes

TABLE II
KEYBOARD PAYLOAD FORMAT

Frame type HID Data
0x0B 7 bytes

TABLE III
MOUSE PAYLOAD FORMAT

Frame type Button action X Y Padding
0x04 0x01 : left, 0x02 : right 2 bytes (LE) 2 bytes (LE) 0x0000

B. CRC computation algorithm

CRC field is 2 bytes long and is calculated over the header and payload fields, using a polynomial equal to 0x1021 and an
initialization value equal to 0x8b83.

APPENDIX D
EXAMPLES OF SIGNALS GENERATED BY DIVERTING THE CALIBRATION PROCESS.

Fig. 9. Samples of malicious signals generated from ESP32, collected with HackRF One and GQRX.

	I Introduction
	II Related work
	III ESP32 Hardware Architecture
	III-A Global Architecture
	III-B Instruction Set Architectures
	III-C Memory layout
	III-D Wireless components

	IV Bluetooth Low Energy stack Reverse Engineering
	IV-A Overall methodology
	IV-B Overcoming static analysis challenges
	IV-B1 Analyzing XTensa instructions
	IV-B2 Extracting and exploiting the Mask ROM regions

	IV-C BLE protocol stack analysis

	V Instrumenting and Hacking the Stack
	V-A Low-level functions hooking
	V-B Manipulating BLE communications
	V-B1 Interception of BLE PDUs
	V-B2 Injection of arbitrary PDUs
	V-B3 Evaluation

	V-C Interacting with non-natively supported protocols
	V-C1 Building arbitrary GFSK reception and transmission primitives
	V-C2 Attacking ANT protocol
	V-C3 Attacking wireless keyboards proprietary protocols
	V-C4 Attacking 802.15.4-based protocols

	V-D Diverting the radio module
	V-D1 Radio module calibration
	V-D2 Forcing a full calibration
	V-D3 Diverting the calibration process

	VI Discussions
	VII Conclusion
	References
	Appendix
	Appendix A: ANT Network Key Algorithms Specification
	Appendix B: ANT Network Key Algorithms Independent Implementation
	Appendix C: Rii i8 Wireless Mini Keyboard & Touchpad protocol overview
	A Packet and payload formats
	B CRC computation algorithm

	Appendix D: Examples of signals generated by diverting the calibration process.

