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Abstract—Bugs in memory-unsafe languages are a major
source of critical vulnerabilities. Large-scale fuzzing campaigns,
such as Google’s OSS-Fuzz, can help find and fix these bugs.
To find bugs faster during fuzzing, as well as to cluster and
triage the bugs more easily in an automated setup, the targets
are compiled with a set of sanitizers enabled, checking certain
conditions at runtime. The most common sanitizer, ASan, reports
common bug patterns found during a fuzzing campaign, such as
out-of-bounds reads and writes or use-after-free bugs, and aborts
the program early. The information also contains the type of bug
the sanitizer found. During triage, out-of-bounds reads are often
considered less critical than other bugs, namely out-of-bounds
writes and use-after-free bugs. However, in this paper we show
that these more severe vulnerabilities can remain undetected in
ASan, shadowed by an earlier faulty read access.

To prove this claim empirically, we conduct a large-scale
study on 814 out-of-bounds read bugs reported by OSS-Fuzz. By
rerunning the same testcases, but disabling ASan’s early exits,
we show that almost five percent of test cases lead to more critical
violations later in the execution. Further, we pick the real-world
target wasm3, and show how the reported out-of-bounds read
covered up an exploitable out-of-bounds write, that got silently
patched.

Index Terms—memory corruptions, sanitizers, large-scale
fuzzing

I. INTRODUCTION

Since the original release of AFL, fuzzing has proven to be
extremely effective in identifying memory corruption vulnera-
bilities. Today, fuzzing is deployed at scale to uncover bugs in
software written in memory-unsafe languages. Google’s OSS-
Fuzz, for example, continuously fuzzes a plethora of famous
open-source projects on hundreds of thousands of cores. Since
its inception, OSS-Fuzz alone has identified over 40, 500
bugs in 650 open source projects. OSS-Fuzz commonly runs
targets with sanitizers, compile time instrumentation tools that
facilitate the detection of undefined behavior, e.g., integers
overflow, out-of-bounds (OOB) read and OOB write issues.

To unearth memory corruption vulnerabilities, OSS-Fuzz
relies on AddressSanitizer (ASan). ASan detects OOB mem-
ory access in heap, stack, globals, use-after-free bugs, and
more [1].

ASan will, by default, abort the code execution immediately
after it detects the first violation. However, bugs that result in
an out-of-bounds write or a use-after-free access commonly
carry higher relevance than bugs that result in an out-of-bounds
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read. OOB write bugs can overwrite control flow information
and potentially result in arbitrary code execution. OOB read
bugs’ ability to leak information, however, is often considered
less critical during triage.

As we will show in this paper, ASan early exits, through
aborting execution on the first bug, can shadow bugs of higher
severity, occurring later in the program’s execution.

Consider the following example

1vo id swap ( c h a r * l e f t , c h a r * r i g h t , i n t l e n ) {
2c h a r tmp [ l e n ] ;
3/ / P o t e n t i a l OOB r e a d
4memcpy ( tmp , l e f t , l e n ) ;
5/ / OOB w r i t e shadowed by e a r l y e x i t
6memcpy ( l e f t , r i g h t , l e n ) ;
7memcpy ( r i g h t , tmp , l e n ) ;
8}

Assume a call to the swap function with the left buffer being
smaller than the right buffer and the len parameter being
the size of the right buffer. This will trigger two bugs. An
out of bounds read in line 6 and an out of bounds write in
line 7, with the second being more severe. However, ASan
would already cause an exit after detecting the OOB read,
shadowing the second bug. This is problematic for anyone
assessing the criticality based solely on the ASan report.
During triaging, test-cases that seemingly trigger only OOB
reads might be dismissed as less interesting, as they would
be useless for exploits without additional exploit primitives.
In a study conducted by Ding and Le Goues [2], the authors
found that around 11% of OOB writes on OSS-Fuzz received
a CVE, whereas this number is only around 2% for OOB
read issues. As a result, potentially exploitable bugs can be
missed. Note that the bug resulting in an OOB write can also
be in a completely different part of the program code, and
thus would likely remain hidden while triaging the OOB read
bug. This underestimated severity might impact the priority
assigned to the finding. Thus, severe security vulnerabilities
can remain unfixed for an extended period of time and may
not be classified as critical vulnerabilities once fixed.

Given the above observations, the natural question to ask
is: do ASan early exits impact our bug-finding capabilities in
practice, or are they a mere theoretical concern?

Our paper gives an answer in the affirmative – in a large-
scale study on OSS-Fuzz, we find that at least 4.5% of OOB
read bugs are accompanied by a more severe bug, namely
OOB writes or use-after-free accesses. The bugs are triggered



by the same testcase, but shadowed as a result of ASan early
exits.

a) Contributions: This paper answers the following re-
search question: To what extent do ASan early exists shadow
high-severity security bugs? Our contributions can be summa-
rized as follows.

• We develop ASanity, an open-source framework to scrape
and rerun OSS-Fuzz results with arbitrary compiler flags,
based on the Monorail scraper by Ding and Le Goues [2].

• Using this framework, we conduct a large-scale study on
814 cases of OOB reads from the OSS-Fuzz database.

• We show that in 4.5% of cases, an input triggering an
out-of-bounds read would have actually triggered a more
severe bug (use-after-free or OOB write) as well.

• We conduct a case study for one shadowed OOB write
vulnerability in the wasm3 interpreter, proving its ex-
ploitability.

AVAILABILITY

ASanity is built on open-source software. Its
source-code and dataset are open-sourced at
https://github.com/fgsect/ASanity.

II. BACKGROUND

A. Fuzzing

Fuzzing is a technique for automatic bug discovery, exe-
cuting a target application in quick succession with a large
number of generated inputs [3]. If one of the inputs, also
referred to as a testcase, triggers an observable bug, usually a
crash or timeout, this testcase is reported and stored for later
analysis. Fuzzing has been widely successful in uncovering
vulnerabilities and has established itself as standard technique
for security researchers. Many coverage-guided fuzzers have
emerged in recent years, all mainly targeted at binary appli-
cations [3]–[7]. Each gathers feedback about the program’s
execution, usually about the edges in the control-flow graph
an execution took. While implementations differ, the fuzzer
generally deems an input interesting if an edge is triggered
a different amount of times by the input. The fuzzer stores
interesting inputs to its corpus to mutate them further. It then
picks a random input from this corpus, applies semi-random
mutations to it, and runs the target with the mutated input. If
the mutated input triggers new behavior (usually measured in
terms of code coverage) the fuzzer again stores the new input
to its corpus, continuing the process. Due to its effectiveness,
coverage-guided fuzzing is used in favor of other fuzzing
methods, wherever it can be used.

B. OSS-Fuzz

OSS-Fuzz, maintained by Google, is a framework for con-
tinuous fuzz testing of open source software. As of July 2022,
OSS-Fuzz identified over 40,500 bugs in 650 open-source
projects [8]. Open-source projects provide a fuzzing config-
uration, consisting of a Docker build file, which automatically
downloads and build the application, and a test-harness, which
tests the project’s code with inputs generated by the fuzzer.

Once a project has successfully been accepted for OSS-Fuzz, it
is continuously fuzzed in a distributed execution environment,
ClusterFuzz. ClusterFuzz regularly pulls the latest commit
of the open-source projects, builds them, and then executes
the provided fuzzing-harness. ClusterFuzz is fuzzing on large
scale, employing hundred thousand virtual machines to ex-
ecute the targets under test. ClusterFuzz supports multiple
fuzzing engines, namely LibFuzzer, AFL++, and Hongfuzz
[9] and complements by compiling and executing the targets
with different sanitizers, namely as AddressSanitizer, Memo-
rySanitizer, ThreadSanitizer, LeakSanitizer [10].

The workflow of OSS-Fuzz is as follows. OSS-Fuzz will
continuously build fuzz targets, following the instructions
given by the developer, and upload these to Clusterfuzz,
which will automatically perform fuzzing. OSS-Fuzz will
automatically report newly discovered bugs to its own issue
tracked, called Monorail. The bug reports include a testcase for
the reproduction of the bug and a commit range containing the
commit hashes of the project in which the bug has appeared
[2]. The reports are first only accessible to the maintainers of
the respective project and are then later disclosed to the public,
accessible via a web interface.

The bugs reports filed to Monorail also contain the output of
the Sanitizer that detected the bug, e.g., the ASan output. From
the sanitizer output, ClusterFuzz deduces a recommended
security severity estimate. For example, an heap-buffer OOB
read is usually assigned a medium severity, while a heap-buffer
OOB write is usually assigned a high severity.

C. Address Sanitizer

Applications written in C and C++ are prone to memory
corruption bugs. Memory corruption bugs can result in unde-
sired side effects. However, these do not necessarily crash the
program. An OOB read from a heap chunk could read values
from other chunks or heap metadata, however, it still accesses
mapped memory pages. Technically, the memory belongs to
the application, but its developer never intended that this line
of code could access that part of the memory. Especially
during fuzzing, where tens of thousands of executions happen
every second, bugs that illegitimately access mapped memory
will never be uncovered without additional insight into the
program state.

In order to detect these sorts of memory corruption bugs
faster, or at all, detect other types of bugs, and to ease the
debugging and triaging process, programs can be instrumented
using sanitizers. A ubiquitous sanitizer, also used by OSS-
Fuzz [9], is Address Sanitizer, ASan for short. ASan uses
compile-time instrumentation in order to detect memory cor-
ruption bugs, for instance out-of-bounds memory access in
the heap, stack, globals, and use-after-free bugs [1]. While
some works extend on the concept, like QASan, porting
it to binary-only targets [11], or works to increase fuzzing
performance [12], the goal and underlying implementation is
very similar for all of them.

ASan stores fine-grained memory access permissions in
shadow memory, and validates all memory accesses at runtime.



By storing the memory access permissions in such a compact
way, ASan induces little performance overhead [1]. Each
memory byte at address P is mapped to a corresponding
shadow memory byte at address

(P >> 3) + Offset

, where Offset is a fixed constant. Each byte in the shadow
memory encodes the state of eight bytes in the target’s
memory. If the shadow byte is set to 0, then all eight bytes are
addressable. If the shadow bye is set to a value k = 1, . . . , 7,
then the first k bytes of the corresponding application memory
are addressable.

During compile time, ASan instruments the target to vali-
date access permissions checks prior to each memory access.
ASan also adds redzones between each chunk of memory
allocated on the heap and each object on the stack. The
shadow memory corresponding to these redzones marks as un-
addressable, thus, detecting illegitimate out-of-bounds access.
To detect use-after-free bugs, ASan poisons freed memory
chunks, marking them as un-addressable.

Once an illegitimate memory access is detected, ASan
aborts the execution of the program under test and reports
details about the detected error. Note that ASan can distinguish
between different types of illegitimate memory accesses, such
as out-of-bounds read, write, or use-after-free bugs.

For example, ASan would print the following report to flag
an OOB read error, alongside further information such as stack
trace and the state of the shadow map.

1$ . / h e l l o w o r l d
2
3==29425==ERROR: A d d r e s s S a n i t i z e r :
4heap − b u f f e r − o v e r f l o w on
5a d d r e s s 0 x00010520075d
6[ . . . ]
7READ of s i z e 1 [ . . . ]
8==29425==ABORTING

Listing 1: An example of ASan’s output, flagging an OOB
read issue.

ASan is built into clang as well as gcc, accessible through the
fanisitze=-address compiler flag.

a) ASan early exits: Notably, ASan aborts the execution
of a program after the first discovered illegitimate mem-
ory access. As a result, bugs can remain undetected. This
behavior can be disabled. Compiling an ASan-instrumented
target with the -fsanitize=recover compiler flag al-
lows to disable early-exists. Setting the environment variable
ASAN_OPTIONS to halt_on_error=false will prevent
the target from crashing upon detecting the first bug. Instead,
execution will continue and ASan will report illegitimate
memory accesses detected later on as well.

D. Related Work

Ding and Le Goues [2] conduct an empirical study of the
bugs identified through OSS-Fuzz. To do so, they first scrape
Monorail, OSS-Fuzz’s issue tracker, to assemble a dataset of
all reported issues on OSS-Fuzz. The paper then analyses the
data in multiple dimensions. For example, the work presents

the distribution of bug types that are found by OSS-Fuzz, how
many bugs are assigned a CVE, and the delay between the
introduction of a bug into the codebase and the uncovering of
the bug in OSS-Fuzz.

SyzScope can be used to find security critical vulnerabil-
ities from seemingly low-risk fuzzing testcases in the kernel
[13]. Given a testcase that triggers a low-risk bug, SyzScope
performs further fuzzing campaigns with this testcase, and
conducts additional post-processing based on static analysis
and symbolic execution to assess whether the testcase can lead
to more critical bugs.

Zou, Li, Chen, et al. [13] evaluated SyzScope on bugs
reported on the continuous fuzzing platform syzbot [14],
OSS-Fuzz kernel pendant based on Syzkaller [15]. First, by
investigating syzbot’s historical data, they found that out-of-
bounds write bugs are often fixed much sooner than out-of-
bounds read bugs, with 29 days vs 89 days on average attempt-
to-fix delay. Using SyzScope, Zou, Li, Chen, et al. [13] were
then able to show that 183 out of 1,170 low-risk testcases point
to bugs with a high security impact.

Fuzzing guides have shown configuration and compiler
options to increase ASan’s detection capabilities [16]. For
instance, Brandt [16] describes that ASan fails to detect
semantic OOB accesses in C++ standard library containers
because the library automatically grows the container’s capac-
ity beyond the allocated size. Using the appropriate compiler
flags remediates this issue. Brandt [16] also recommend to use
the ASan’s recovery option -fsanitize=recover, albeit
without giving an in-depth explanation or empirical proof.

Jiang, Gan, Herrera, et al. [17] present Evocatio, a
tool to discover capabilities yielded by a given crashing
testcase/input. The capabilities of a bug comprise information
relevant for exploitation, e.g. the bug type (e.g., OOB access,
or use-after-free), the access type (read or write access), and
the location (e.g., heap or stack). Through a combination
of fuzzing and sanitization, Evocatio uncovers additional
capabilities exposed by a given bug. Specifically, Evocatio
uses CapSan, an extension of ASan, to reveal capabilities
exposed by a given testcase. To this end, CapSan also makes
use of the halt_on_error=false option. Evocatio
discovered additional capabilities for 50% of 38 evaluated real-
worlds bugs.

III. EXPERIMENTAL SETUP

In order to answer our research question To what extent
do ASan early exists prevent the detection of high-severity
security bugs?, we leverage OSS-Fuzz’s findings database.
To this end, we develop an open-source analysis framework,
ASanity. ASanity proceeds in two steps. First, it scrapes the
Monorail bug tracker and filters for bugs that have been
identified through ASan. We focus on heap-buffer out-of-
bounds reads. Second, ASanity recompiles the affected har-
nesses at the respective commit and executes them with the
crashing input provided by OSS-Fuzz. For the recompilation,
ASanity additionally includes the -fsanitize=recover
compiler flag, to disable early-exits later on. For the rerun,



we consequently disable the ASan early-exit by setting the
option halt_on_error=false. If the crashing input also
triggers a heap OOB write or a use-after-free bug, we store
the corresponding case for later in-depth analysis.

In order to scrape the Monorail bug tracker, we build on
top of the Monorail scraper developed by Ding and Le Goues
[2]. The scraper accesses Monorail’s web interface through
Selenium, a browser automation tool [18]. Monorail’s issue
descriptions include an excerpt of the ASan output. ASanity
parses this output to categorize the issues according to their
bug category. Upon rerunning the target, ASanity collects and
parses the extended ASan output, now potentially containing
more than one bug. Should this output contain a more severe
bug than the one described in the respective Monorail issue,
ASanity reports the issue to the user. Algorithm 1 summarizes
ASanity’s workflow.

Algorithm 1 ASanity’s workflow
I ← Scrape all disclosed issues from Monorail
for each issue i ∈ I do

Parse ASan report of i
if i is heap OOB read issue then

Retrieve and recompile target program P
Rerun P with testcase of i without early exits
R← extended ASan report
if OOB write or UAF in R then

Save i as finding
end if

end if
end for

IV. EVALUATION

In order to estimate the prevalence and impact of shadowed
bugs, we used ASanity to analyze a large body of OSS-
Fuzz issues and conducted a case-study on an underestimated
testcase. We present our results in the following.

A. Data Collection

In this section, we present the data we were able to
retrieve from OSS-Fuzz. All of the following content has been
computed using this data. Our dataset can be summarized as
follows.

• We scraped issues reported between May 2016 and May
2022. In total, we successfully received data for 43548
issues.

• The issues spanned 498 different projects in total.
• Out of the retrieved 43548 issues we identified 1986 as

heap OOB read issues reported through ASan. Notably,
even though only 4.5% of the reported bugs are heap
buffer OOB read, these bugs occurred in at least 220
different projects, 44% of all projects that were contained
in our dataset.

• Out of 1986 reported OOB read bugs, we successfully
reproduced 1788 of them, which equals a 90% success

rate. The remaining 180 bugs were not reproducible in
our large-scale tests.

• For each of 1788 reproduced OOB bugs, ASanity recom-
piled the affected project at the respective commit with
the compiler flag -fsanitize=recover enabled. We
achieve a success rate of 55% for these custom builds.

• Finally, our large-scale evaluation successfully ran against
814 different examples of heap OOB read issues, dis-
tributed over 159 different projects.

B. Empirical Results

For each of the heap OOB read issues, we ran the re-
compiled target using the respective crashing input. Table I
lists all projects for which at least one testcase triggered an
OOB write or use-after-free issue in addition to an OOB read
issue. Our key results are as follows.

• For 23 projects (out of 146), we managed to identify at
least one testcase that also triggers an OOB write or a
use-after-free bug if the -fsanitize=recover flag
is enabled.

• For 19 projects, at least one testcase that triggered an
OOB read also triggered an OOB write.

• For 8 projects, at least one testcase that triggered an OOB
read also triggered a use-after-free.

• In total, 38 of the 814 heap OOB read issues also trig-
gered an OOB write or a use-after-free bug. Specifically,
30 of the OOB read issues also triggered an OOB write,
and 9 also triggered a use-after-free.

• 65 out of the 814 OOB read issues were flaky, i.e., they
only triggered the crash in a non-deterministic manner.
None of the flaky crashes triggered an additional OOB
write or use-after-free.

In theory, a memory corruption could taint ASan’s state,
leading to false positives in later error reports, so-called
spurious errors [19]. To root out this error source, we validated
a sample of 25% of all additional OOB write or use-after-free
bugs manually and confirmed their correctness.

C. Case-Study Of A Bug In wasm3

a) Bug Analysis: To assess whether the missed out-of-
bounds writes really translate into security issues in the real
world, we conducted a case study on an OSS-Fuzz bug report
for the wasm3 project [20]. wasm3 is a WebAssembly inter-
preter, which takes as input a WebAssembly binary format,
parses it, and runs its WebAssembly code. The bug (id 33237
in Monorail) was reported as a heap overflow OOB read in
wasm3’s m3_LoadModule function [21]. Reproducing the
testcase with ASan reveals that the out-of-bounds read is
triggered by a memcpy operation in the function that parses
the data segments of a WebAssembly file, see Listing 2. Note
that the parameters segment->data, segment->size,
and segmentOffset are user-controlled.

1 M3Result I n i t D a t a S e g m e n t s ( M3Memory * io memory ,
IM3Module io module )

2 {
3 [ . . . ]



Projects OOB Reads OOB Writes Use-After-Frees

libdwarf 1 1 0
libsass 1 1 0
ghostscript 9 1 0
botan 2 1 0
wasm3 1 1 0
leptonica 16 1 1
mruby 5 1 0
inchi 3 0 1
ffmpeg 58 4 1
openh264 4 2 0
net-snmp 6 1 0
tdengine 3 2 0
muparser 7 3 0
dav1d 2 1 0
libreoffice 20 1 1
libhtp 1 0 1
openjpeg 3 1 0
grok 15 2 0
suricata 4 0 1
ndpi 59 0 2
php 9 2 1
libredwg 18 1 0
libheif 7 3 0

TABLE I: Detailed listing of all OOB read testcases that also
triggered other bugs

4 i 3 2 s e g m e n t O f f s e t ;
5 b y t e s t s t a r t = segment −> i n i t E x p r ;
6 ( E v a l u a t e E x p r e s s i o n ( io module , & s e g m e n t O f f s e t ,

c m3Type i32 , & s t a r t , segment −> i n i t E x p r +
segment −> i n i t E x p r S i z e ) ) ;

7 i f ( ( s i z e t ) ( s e g m e n t O f f s e t ) + segment −> s i z e <=
io memory−>m a l l o c a t e d −> l e n g t h )

8 u8 * d e s t = m3MemData ( io memory−>m a l l o c a t e d
) + s e g m e n t O f f s e t ;

9 memcpy ( d e s t , segment −>da ta , segment −> s i z e ) ;
/ / OOB−R h e r e

10 }
11 }

Listing 2: The vulnerable ParseDataSegment Function in
wasm3.

The testcase provided by OSS-Fuzz triggers an OOB read bug,
that reads beyond the boundaries of the segment->data
buffer. Further analysis of the bug shows that it is triggered
by missing bounds checks during parsing of a section of
the WebAssembly file. The function ParseSection_Data
does not perform sufficient bounds checks, as seen in Listing
3.

1 M3Result P a r s e S e c t i o n D a t a ( M3Module * io module ,
b y t e s t i b y t e s , c b y t e s t i e n d )

2 {
3 [ . . . ]
4 ( ReadLEB u32 (& segment −>s i z e , & i b y t e s , i e n d )

) ;
5 segment −>d a t a = i b y t e s ;
6 i b y t e s += segment −> s i z e ;
7 [ . . . ]
8 }

Listing 3: The vulnerable function in wasm3. Note
that segment->size and segment->data are user-
controlled.

In case the i_bytes pointer points beyond the boundary
of the data allocated for the file after being increased by
segment->size, the memcpy operation will read beyond
the bounds of the file buffer. As a result, ASan will exit,
reporting an OOB read bug.

This early-exit, however, hides an OOB write bug that
is triggered by the same testcase, also occurring during the
memcpy in the InitDataSegments function. The root
cause of this OOB write is that the InitDataSegments
function suffers from an integer overflow vulnerability. The
segmentOffset variable is parsed as a signed integer
and then cast into a size_t when performing the bounds
check in line 7 of Listing 2. If the attacker provides a
negative segmentOffset, then this type cast will overflow
– providing a segment of size at least |segmentOffset| will
cause the addition in line 7 to overflow again, resulting in the
bounds checks being passed. If the segmentOffset provided
was negative, however, line 8 will result in a write before the
dest buffer. This gives the attacker a primitive to overwrite
data and metadata of other chunks on the heap. As we will
show below, this OOB write is a severe security vulnerability
that leads to arbitrary code execution.

We highlight that the OOB read and the OOB write issue
are caused by two different bugs. The OOB read is caused by
an insufficient bounds check, while the OOB write is caused
by an integer overflow. The testcase provided with the bug
report for wasm3 triggers both bugs by coincidence — they
are not correlated. To fix the OOB read bug, the developers
introduced a bounds check and error out in case of a violation,
see Listing 4.

1M3Result P a r s e S e c t i o n D a t a ( M3Module * io module ,
b y t e s t i b y t e s , c b y t e s t i e n d )

2{
3[ . . . ]
4( ReadLEB u32 (& segment −>s i z e , & i b y t e s , i e n d )

) ;
5segment −>d a t a = i b y t e s ;
6i b y t e s += segment −> s i z e ;
7t h r o w i f ( ” d a t a segment u n d e r f l o w ” , i b y t e s >

i e n d ) ;
8[ . . . ]
9}

Listing 4: The fixed ParseSection_Data function with
an included underflow check.

After applying only this fix, the wasm3 will then error out
when parsing the crashing testcase, never executing the mem-
cpy statement that triggered the OOB write issue. A regression
test with the crashing testcase would thus not detect the OOB
write issue, although it is still present in the code. Thus, if
a developer would follow a typical bugfix workflow of first
seeing the ASan early-exit report for issue 33237, fixing the
issue by adding the bounds check, and then running regression
tests, the OOB write bug would still remain in the codebase.
However, by disabling ASan early-exits, the developer would
notice both the OOB read as well as the OOB write report,
again illustrating the importance of leveraging this option
during triage. The wasm3 developers indeed fixed the OOB
write and OOB read bug in two different commits, however,



both were labeled with “Fix OSS-Fuzz issues”. Reconstructing
their exact workflow is out of the scope of this work.

b) Exploitability: To illustrate the security of shadowed
bugs, we present an exploit for the OOB write triggered by
the testcase provided with OSS-Fuzz issue 33237. To exploit
the OOB write vulnerability present in the older version of
the wasm3 interpreter, we prepare a malicious WebAssem-
bly binary file. Parsing the file with the vulnerable wasm3
interpreter will lead to code execution and spawn a shell. We
construct the file as follows.

1) We prepare the heap by declaring multiple WebAssem-
bly functions – each function declaration results in one
independent allocation on the heap.

2) In doing so, we groom the heap so that the heap object
corresponding to the function _start, which is called
by default, is placed exactly before the chunk allocated
for the dest buffer. Note that the function object
contains a function pointer function->compiled,
which we can overwrite with arbitrary data abusing the
out-of-bounds of write.

3) This function pointer is then deferenced in the
RunCode function, calling the function that
function->compiled points to.

1 # d e f i n e nextOpImpl ( ) ( ( IM3Opera t ion ) (* pc ) ) (
pc + 1 , d m3OpArgs )

2 [ . . . ]
3 d m3RetSig RunCode ( d m3OpSig )
4 {
5 n e x t O p D i r e c t ( ) ;
6 }

Listing 5: The RunCode Function of Wasm3.

4) We set function->compiled pointer to point to our
payload on the heap, which, in turn, contains a pointer
to an execve gadget in the libc – executing this gadget
will spawn the desired shell.

Listing 6 contains an excerpt of the Python script used
to assemble the exploit. The Python script assembles
WebAssembly-Text file, which we then convert to a We-
bAssembly binary payload using the wat2wasm tool from
the WebAssembly Binary Toolkit [22].
i m p o r t s u b p r o c e s s
from pwn i m p o r t *
p a y l o a d l e n = 160
t a r g e t g a d g e t = p64 (0 x 7 f f f f 7 e a 5 b 0 1 )
o u r a d d r e s s = 0 x5555555f0018 # 0 x5555555f2428
o f f s e t = −160 # f u n c t i o n p o i n t e r a t d e s t −160
p a y l o a d = f l a t ({ 0 : p64 ( o u r a d d r e s s +8) , 8 :

t a r g e t g a d g e t , 5 6 : ” s t a r t \x00 ” } , l e n g t h =
p a y l o a d l e n , f i l l e r = ’\x00 ’ )

w a t t e x t = ’ ’ ’
( module $M1
’ ’ ’
f o r i i n r a n g e ( 8 6 ) :

w a t t e x t += f ’ ’ ’
( func $ f i l l f u n c t i o n { i } ( param i 3 2 ) ( param i 3 2 )
)
( e x p o r t ” f i l l f u n c t i o n { i }” ( func $ f i l l f u n c t i o n { i
} ) )
’ ’ ’

w a t t e x t += ’ ’ ’

( func $ s t a r t ( param i 3 2 ) ( param i 3 2 ) )
( e x p o r t ” s t a r t ” ( func $ s t a r t ) )

’ ’ ’
w a t t e x t += b ’ ’ ’
( d a t a ( i 3 2 . c o n s t %d ) ”%b ” )
) ’ ’ ’ % ( o f f s e t , p a y l o a d )
[ . . . ]

Listing 6: The Python script that assembles the payload of our
exploit

Invoking the vulnerable wasm3 interpreter with the crafted
file will trigger the exploit and spawn a shell.

V. FUTURE WORK

A. Relaxed ASan Fuzzer

Current fuzzing campaigns have two choices: use ASan, and
exit early, or run without address sanitization, and potentially
not find these memory corruptions at all. Fuzzers running on
ASan instrumented targets use ASan in its early-exit mode,
resulting in missed bugs of higher criticality, as we show
throughout this paper. A relaxed ASan Fuzzers could instead
disable ASan’s early-exit behavior, leading to the detection of
additional bugs and increased code coverage. Without ASan
early-exit behavior, testcases that cause memory violations do
not necessarily crash the target. This can be compensated
for by a) either additional seed queue post-processing that
includes parsing the ASan output, or b) by modifying ASan to
defer a crash until the program exits, instead of either crash-
ing immediately or not crashing at all. The additional post-
processing could even uncover multiple bugs per testcases,
including shadowed ones. We note that disabling early-exit
behavior might also result in further mutation of crashing
testcases, which are usually not considered for further mu-
tation. Doing so trades fuzzer attention from non-crashing
testcases for further mutating crashing testcases. This trade-off
is favorable in situations where different bugs are triggered by
two similar inputs, or to uncover additional bug capabilities,
c.f. [17]. Repeatedly executing crashing testcases also incurs a
performance penalty, as the ASan reporting entails additional
overhead. This performance penalty will however be negligible
in most cases, as the crashing testcases will usually only make
up a tiny fraction of processed inputs.

B. Mutate Testcases for Shadow Bugs

Right now, we only re-run the crashing testcases from
OSS-Fuzz. However, we note that these testcases may not
immediately lead to shadowed bugs. Jiang, Gan, Herrera, et
al. [17] show that some testcase only trigger an OOB read, but
are only a few mutations away from triggering a more severe
vulnerability as well. ASanity could be extended to quantify
how many testcases that trigger OOB read issues result in more
severe vulnerabilities when mutating the testcases further.
To this end, a future study could run hyper-focused fuzzing
campaigns on each target, using a relaxed ASan fuzzer that
is seeded with only the OOB read testcases. Alternatively,
ASanity could make use of existing tools for bug evaluation,



such as Evocatio [17]. We assume this would identify an
even higher number of shadowed bugs.

C. Extend ASanity Analyses

During the course of this paper, we specifically targeted
heap corruptions. However, this leaves room for further anal-
yses as valuable future work. Specifically, ASanity’s analyses
can be extended to other bug classes, such as stack-based
buffer overflows, or even other sanitizers.

VI. CONCLUSION

Our large-scale study shows that ASan early-exists can lead
to an underestimation of a finding’s criticality. Critical bugs
may be shadowed by earlier, less severe OOB read bugs that
may or may not be related. We specifically aimed to find
such cases, where testcases that trigger exploitable bugs were
classified as heap OOB read issues and managed to exploit
such a case successfully. The exploitable bug was not tagged
as a critical security vulnerability.

As actionable advice,we recommend running ASan with
the -fsanitize=recover option during the triage phase.
This will increase the chance of detecting severe security
bugs without impeding fuzzing performance or negatively
impacting the triage phase. In light of the results of the present
study, we expect that integrating these changes in (large-scale)
fuzzing setups will help uncover severe security vulnerabilities
that would otherwise remain hidden.
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