
CustomProcessingUnit: Reverse Engineering and
Customization of Intel Microcode

Pietro Borrello1, Catherine Easdon23, Martin Schwarzl2, Roland Czerny2, Michael Schwarz4

1 Sapienza University of Rome, 2 Graz University of Technology,
3 Dynatrace Research, 4 CISPA Helmholtz Center for Information Security

Abstract—Microcode provides an abstraction layer over the
instruction set to decompose complex instructions into sim-
pler micro-operations that can be more easily implemented
in hardware. It is an essential optimization to simplify the
design of x86 processors. However, introducing an additional
layer of software beneath the instruction set poses security and
reliability concerns. The microcode details are confidential to the
manufacturers, preventing independent auditing or customiza-
tion of the microcode. Moreover, microcode patches are signed
and encrypted to prevent unauthorized patching and reverse
engineering. However, recent research has recovered decrypted
microcode and reverse-engineered read/write debug mechanisms
on Intel Goldmont (Atom), making analysis and customization
of microcode possible on a modern Intel microarchitecture.

In this work, we present the first framework for static and
dynamic analysis of Intel microcode. Building upon prior re-
search, we reverse-engineer Goldmont microcode semantics and
reconstruct the patching primitives for microcode customization.
For static analysis, we implement a Ghidra processor module
for decompilation and analysis of decrypted microcode. For
dynamic analysis, we create a UEFI application that can trace
and patch microcode to provide complete microcode control
on Goldmont systems. Leveraging our framework, we reverse-
engineer the confidential Intel microcode update algorithm and
perform the first security analysis of its design and implemen-
tation. In three further case studies, we illustrate the potential
security and performance benefits of microcode customization.
We provide the first x86 Pointer Authentication Code (PAC)
microcode implementation and its security evaluation, design
and implement fast software breakpoints that are more than
1000x faster than standard breakpoints, and present constant-
time microcode division, illustrating the potential security and
performance benefits of microcode customization.

I. INTRODUCTION

Microcode is the hidden software layer between the instruc-
tion set and the underlying hardware. In most Complex In-
struction Set Architectures (CISC), each instruction, or macro-
instruction, is translated into one or more micro-operations
(µops) that are executed by the underlying hardware [41].
In total, there are over 2700 distinct µops in Intel x86 [48].
Many simple instructions map to a single µop. However, more
complex instructions are essentially entire programs and can
map to > 50 µops [43]. Microcode is a crucial optimization
for these instructions, as µops are much simpler to implement
in hardware and can be pipelined more efficiently [41].

Microcode is notoriously challenging to verify [22]. Inde-
pendent auditing of microcode, subjecting it to static and dy-

namic analysis, would supplement manufacturers’ verification
efforts and help build trust in this hidden software. Moreover,
tools enabling such analysis would facilitate research into CPU
behavior. Dynamic microcode tracing, for example, would
provide the fine-grained microarchitectural control that is so
elusive in microarchitectural attack research [30] and in CPU
fuzzing for undocumented behavior [24], [25], [29], [51] or
hardware defects [54]. Furthermore, the ability to modify
microcode would enable research into microcoded security
mechanisms such as microcode-assisted address sanitization
and customizable rdtsc precision [52].

Unfortunately, x86 microcode is confidential. Intel partially
documented the µop sequences used for instructions in the
Pentium Pro [42], but only µop counts have been published
for instructions on newer CPUs, making reverse engineering
research necessary [1]. Microcode has been reverse-engineered
to enable customization on AMD Opteron [53] and Intel P6
(Pentium Pro to Pentium III) [16]. However, newer x86 CPUs
have much stronger cryptographic protection for microcode
updates. The updates are encrypted and signed to prevent
unauthorized patching or reverse engineering, and the de-
crypted microcode never leaves the internal buffers of the
CPU. Beyond the protection of intellectual property, security is
a powerful motivation for this cryptographic protection. Prior
work has explored security concerns around microcode, such
as the potential for backdoors [27], [68]. If the update mecha-
nism were compromised, an attacker could maliciously patch
microcode, for example, to introduce a backdoor to reveal
cryptographic keys to JavaScript in the browser [68]. Reverse
engineering research must, therefore, carefully balance the
potential security benefits against the potential risks.

In recent years, microcode research has seen a considerable
evolution thanks to the work of Ermolov et al. [32], [34], [35].
They achieved Red-Unlock on Goldmont and Goldmont Plus
CPUs, a CPU mode that enables JTAG debugging of internal
CPU components using external hardware [32]. Furthermore,
they identified two undocumented instructions accessible on
Red-Unlocked CPUs, udbgrd and udgbwr, that enable read-
/write access to internal microarchitectural components from
software [35].

Motivated by this crucial breakthrough, in this paper we
build upon their work, posing the following research questions:

1) What are the semantics of microcode in modern Intel
CPUs?

2) Is the microcode update process secure?
3) Could microcode customization bring security or perfor-

mance benefits?
To answer these questions, we reverse-engineer microcode

semantics and reconstruct microcode patching capabilities.
We develop the first decompiler for Goldmont microcode to
analyze how the CPU interacts with its internal components
during microcode updates. We leverage the undocumented
instructions to mimic these interactions to create microcode
read and write primitives. Building upon these, we design
and implement CustomProcessingUnit: the first framework for
static and dynamic analysis of Intel microcode, supporting
the Goldmont microarchitecture. Our framework can assemble
microcode patches, install these in the CPU and then trace
microcode execution in real-time, enabling CPU debugging at
the µop level without additional hardware.

We leverage our framework to reverse-engineer the con-
fidential Intel microcode update algorithm and analyze it in
depth. For the first time, we perform a public and independent
security analysis of the design and implementation of the
update algorithm on Goldmont, evaluating its attack surface
and possible security holes. Our analysis reveals a minor
weakness in the implementation: the update is stored in the
L2 cache during decryption, which is potentially exploitable,
although we did not succeed in doing so. Such analysis is a
first step toward independent auditing of microcode to verify
manufacturers’ security claims.

Moreover, in three additional case studies, we explore the
benefits of CPU customization at the microcode level for per-
formance and security. First, we bring Pointer Authentication
Codes [5] to x86 for the first time, presenting a fast microcode
implementation of pointer signing and verification in ~25
clock cycles. We thus show how we can enhance x86 CPUs
with fundamental security concepts from other architectures.
We evaluate the security of our x86 PAC implementation by
reproducing the PACMAN attack [65] for the first time on
x86. Thanks to our framework, we deepen the analysis by
investigating alternative PAC implementations that mitigate
such an attack at the microcode level, providing the first public
PAC implementation not vulnerable to PACMAN. Second,
we design and implement fast software breakpoints, which
we call µsoftware breakpoints, to execute the breakpoint
handlers directly in microcode. This provides a speedup of
~1000x over int3 instructions, showcasing how microcode
customization can bring performance benefits. Third, we patch
the div instruction to execute in constant time to prevent
timing side-channel attacks [9], bringing a ~1.6x speedup over
state-of-the-art constant-time implementations, improving both
performance and security.

In brief, we present the following contributions:
1) We introduce the first framework for static and dynamic

analysis of Intel Goldmont (GLM) microcode for Atom
CPUs, featuring support for microcode tracing and patch-
ing to provide complete control.

2) We demonstrate how our framework aids CPU reverse
engineering by uncovering the details of the confidential
Intel microcode update algorithm.

3) In three further case studies, we illustrate how complete
control over microcode can bring security and performance
benefits. We implement Pointer Authentication Codes
(PAC) for x86, fast software breakpoints, and constant-
time µcode division.

With this work, we hope to make microcode research
accessible to a broader audience and to help the community
improve its understanding of microcode security guarantees.
CustomProcessingUnit is open-source at https://github.com/p
ietroborrello/CustomProcessingUnit and https://github.com/p
ietroborrello/ghidra-atom-microcode (for the decompiler).

Outline. We provide relevant technical background in Sec-
tion II. Section III presents our framework for static and
dynamic analysis and describes the reverse engineering we
conducted to create it. Sections IV, V, VI, and VII provide
case studies of our framework, including reverse engineering
of the microcode update algorithm in Section IV. We conclude
in Section VIII.

Ethical Considerations. Before deciding to publish our
framework, we assessed its malicious potential. Our static
analysis functionality requires decrypted microcode and does
not compromise Intel’s microcode update encryption and in-
tegrity validation. Our dynamic analysis functionality requires
the CPU to be in Red Unlock mode. The only publicly-known
method to achieve this requires exploitation of a patched
vulnerability. It is only feasible on Intel’s system-on-chip
CPUs and, in practice, has been achieved on a small number of
devices (see Section II). While Red Unlock may be achieved
on more devices in the future, in our assessment, the potential
security benefits of making microcode analysis accessible to
a broader audience outweigh this risk.

II. BACKGROUND

In this section, we introduce the relevant technical back-
ground required for understanding the rest of the paper. Note
that the relevant background for our case studies is covered in
their respective sections (IV, V, VI, VII).

1) Microcode Structure: The Instruction Decoding Unit
(IDU) is the component responsible for translating CISC
instructions to µops. Most Intel CPUs have multiple decoders:
several simple decoders to translate x86 instructions that map
to a single µop, a complex decoder to translate instructions
that map to 1-4 µops, and a Microcode Sequencer responsible
for translating microcoded instructions [47], [53]. Microcoded
instructions are the most complex instructions that require
advanced logic to be executed. Examples are cpuid that
returns detailed information about the CPU and wrmsr that
modifies internal settings in model-specific registers (MSRs).

The microcode is stored in a dedicated read-only memory
inside the CPU (MSROM). Instruction definitions are orga-
nized in triads, consisting of three µops and a sequence word.
Sequence words affect the control flow of the executed triad

. . .

cpuid

. . .

. . .

. . .

. . .

Decoder

MSROM
seqw
ROM

MSRAM
seqw
RAM

match registers

Fig. 1: Each triad in the MSROM and MSRAM has an
associated sequence word (seqw). The match registers redirect
execution from the MSROM to the MSRAM.

and can also act as synchronization primitives for the dataflow
akin to lfence instructions. Goldmont (GLM) CPUs have
space for 7936 triads in the MSROM [31].

2) Microcode Patches: Modern CPUs allow the microcode
to be updated at runtime with microcode patches. This enables
patching of bugs in complex instructions [21] and implementa-
tion of new features. Thus, the CPU needs a dedicated writable
region to hold the patches (MSRAM). On GLM, there is space
for 128 triads in the MSRAM [31]. Updates are applied either
by the BIOS at boot time or by the operating system. For Intel
CPUs, the update routine is triggered by writing the virtual
address where the microcode patch has been loaded to the
MSR IA32_BIOS_UPDT_TRIG. Intel’s updates are signed and
encrypted [20], [34], [40]. For GLM and GLM Plus, Ermolov
et al. documented that the update is RSA signed and RC4
encrypted, providing a decryption algorithm [33].

3) Microcode Hooks: To run patched microcoded instruc-
tions, a microcode hook redirects control flow from the
MSROM to the MSRAM [34], [52]. To implement the hooks,
microcode updates set the match registers in the CPU to the
microcode addresses that need to be redirected. Each time
the microcode is executed from the MSROM at an address
contained in one of the match registers, the control flow is
automatically redirected to the corresponding patch address
in the MSRAM. On GLM, there is space for up to 64
hooks [31]. Figure 1 shows the interaction between MSROM
and MSRAM, through the match registers

4) Control Register Bus (CRBUS) and Local Data Access
Test Port (LDAT): The CRBUS is an internal bus that con-
nects all internal CPU units and exposes core controls and
configurations (e.g., control registers and some MSRs are
mapped) [35]. Each unit has its own range of addresses on
the bus that can be used to query its state and update its
configuration. It is used by microcode but is not intended to
be architecturally accessible to software. LDAT is a debug

interface between local CPU arrays and the CRBUS that
facilitates post-silicon validation [55]. Each array provides an
LDAT port for read/write access over the CRBUS. Combined,
the CRBUS and LDAT provide access to the internal state of
CPU core units such as the Microcode Sequencer, Instruction
Fetch Unit, caches, and TLB [15].

5) Red Unlock: This special mode provides access to the
CRBUS and LDAT via JTAG using a USB debug cable
or proprietary hardware [35]. In Intel’s threat model, Red
Unlock (which they refer to as ‘Protection Class Intel’) is
only possible with Intel’s authentication key [45]. However,
Ermolov et al. published a proof of concept to Red Unlock
GLM by exploiting a (now patched) vulnerability in the Intel
Management Engine (ME) [32]. Leveraging Red Unlock, they
exported the MSROM and MSRAM contents and reverse-
engineered the format of µops, providing a disassembler for
GLM microcode. The proof of concept has also been ported
to Skylake and Kaby Lake [2]. In contrast to GLM, this only
enables Red Unlock on the ME rather than the CPU because
only Intel’s system-on-chip designs have a shared DFX AGG
unit (and, therefore, a shared unlock state) for the chipset and
main CPU cores [35].

6) Undocumented Debug Instructions: Ermolov et al. dis-
covered the existence of two undocumented instructions on
Intel CPUs, udbgrd and udbgwr [35]. These instructions are
the final puzzle piece for microcode customization. On Red-
Unlocked CPUs, they can be used to read and write all
of the internal components made accessible by the CRBUS
and LDAT from software without any additional hardware.
Crucially, this includes the Microcode Sequencer arrays [35].
While only GLM and GLM Plus have been publicly Red-
Unlocked, the existence of these instructions on other microar-
chitectures has been inferred using performance counters [11].
In this paper, we leverage these instructions to create the
first analysis framework for observing and modifying CPU
microcode.

III. FRAMEWORK

In this section, we present our framework for microcode
reverse engineering and customization. For static analysis, we
develop a Ghidra module to enable microcode decompilation
and reverse engineering. For dynamic analysis, we implement
a UEFI application to trace and patch microcode execution.

A. Static Analysis

Ermolov et al. provide decrypted GLM microcode and the
contents of the Microcode Sequencer arrays on GitHub [34].
We leverage their findings to implement a processor module
for the Ghidra decompiler. The Microcode Sequencer array
content can also be extracted using CustomProcessingUnit (see
III-B).

We define the semantics of each µop by reconstructing their
effects from the naming scheme in the published disassembler
(which, in turn, was constructed by observing the effect of
µops on registers and from leaked opcode lists from Intel [34]).
For the µops that were not straightforward to understand,

Fig. 2: Microcode decompiled within Ghidra using our pro-
cessor module. This function, rc4_decrypt, is used in the
microcode update routine.

we conduct dynamic analysis (see III-B) to observe the side
effects of these µops in isolation. In total, we define semantics
for 8350 µops in Ghidra’s processor specification language,
SLEIGH [28].

Our static analysis module takes as input the dump of
microcode ROM and RAM (including sequence words) and
packs them as a binary blob parsable by our Ghidra processor
module. For each triad, the packer analyzes the sequence
words relative to that triad, and encodes the sequence-word
semantics in the respective µop of the triad. Thus, for each
triad of four 48-bit µops (including the nop at the end)
and one 32-bit sequence word, it emits four 128-bit µops to
be analyzed by the Ghidra processor module. Removing the
concepts of triads and sequence words simplifies the design
of the Ghidra processor module.

CPU microcode is highly optimized: several basic blocks are
shared between functionalities, there is no distinction between
jumps and calls, and basic blocks are highly interleaved among
each other to optimize for code reuse (and thus size) instead
of code locality. The decompiler conducts basic analysis to
identify function boundaries, reconstruct high-level control
flow and internal data structures, and cross-reference these.
Figure 2 shows an example of clean control flow reconstructed
in Ghidra using our processor module. We leverage our
decompiler to analyze microcode throughout this work.

B. Dynamic Analysis

We now introduce our framework’s microcode dynamic
analysis module, which is the first of its kind for Intel CPUs. In
this section, we describe the reverse engineering we conducted
to build it, present the implementation details, and customize
rdrand as an example of instruction patching.
Execution Context. The module is capable of hooking,
patching, and fully tracing microcode execution. It consists
of a UEFI application that runs before the OS bootloader.
This provides a noiseless environment for experiments and
complete control over the system. Alternatively, the same MSR
operations could be implemented in a Linux kernel module,
trading noise for a more feature-rich execution environment.

def ucode_sequencer_write(SELECTOR, ADDR, VAL):
CRBUS[0x6a1] = 0x30000 | (SELECTOR << 8)
CRBUS[0x6a0] = ADDR
CRBUS[0x6a4] = VAL & 0xffffffff
CRBUS[0x6a5] = VAL >> 32
CRBUS[0x6a1] = 0

with SELECTOR:
2 -> Sequence Words Patch RAM
3 -> Match Registers
4 -> Microcode Patch RAM

Listing 1: Slightly simplified sequence of commands to write
the value VAL to the address ADDR of the selected (with
SELECTOR) microcode array. Each CRBUS write is an invocation
of the udbgwr instruction with rcx=0.

Hardware Setup. All our tests are performed on GLM,
namely Intel Celeron N3350 with cpuid 0x000506C9 and
0x000506CA. We execute all our experiments with a fixed CPU
frequency of 1.10 GHz.

1) Reverse-Engineering LDAT Accesses: We use our de-
compiler to reverse-engineer the CRBUS access patterns dur-
ing microcode updates that allow the CPU to overwrite the
MSRAM. Our starting point is the CRBUS address range
mapping to the LDAT port of the Microcode Sequencer,
which has been documented in prior work [15]. By cross-
referencing these addresses with the decompiled microcode,
we can find and analyze the microcode update routine. This
lets us interact with the Microcode Sequencer by reproducing
the commands that the update routine sends to its LDAT
port. Listing 1 shows our primitive to write to the Microcode
Sequencer’s arrays. We build our dynamic analysis module
upon our ucode_sequencer_write primitive, developing a
similar primitive to read from the microcode arrays.

2) Microcode Hooks: To modify the behavior of an instruc-
tion in a custom microcode patch, we need to configure the
match registers to ‘hook’ that instruction. By dumping the
content of the match registers after a regular microcode update
has been applied, we can reverse-engineer the format of the
match-register entries. The following snippet shows how to
compute a match entry register to hook an MSROM instruction
address match_address to redirect execution to the MSRAM
patch_address:

def compute_match_register(match_address, patch_address):
patch_offset = ((patch_addr - 0x7c00) / 2) << 16;
return (0x3e000000 | patch_offset | match_address |
enabled)

Note that the last bit of match_address overlaps with the
enabled bit, which, when set to 0, disables the hook. The last
bit of the match address is ignored by the CPU, and, to our
understanding, only even addresses can be hooked.

3) Microcode Patches: Combined with our static analysis
capabilities, we can modify instruction behavior. To better
express the desired semantics of our patches, we develop
a microcode assembler. Our assembler supports most µops

Algorithm 1: Pseudocode of the microcode hook that
dumps the timestamp and resumes execution.

// Assume this hook is installed at index
// 0 of the match registers
function dump_ts_and_resume(addr)

saved_ts ← read_clock()
// disable hook by overwriting
// the entry
ucode_sequencer_write(

sel: 3, // select match registers
idx: 0, // assume idx 0
val: 0 // 0 to disable

)
resume_execution(addr)

and hides complex details such as instruction addresses and
registers by supporting high-level constructs like labels and
variables. Hooks can be generated with the .patch directive to
set up a match-register entry automatically. As µop immediates
are restricted to 16 bits, the assembler also supports macros
to deal with 64-bit constants by emitting multiple instructions.
Listing 3 shows an example of a microcode routine we can
assemble.

4) Microcode Traces: By leveraging microcode patches
and hooks, we can obtain microcode execution traces. We
define a specific microcode patch that when executed reads
the timestamp counter of the CPU, saves it in a specific
location, disables itself and then continues execution. The
hook disables itself by zeroing out the corresponding entry
in the match register, accessing the CRBUS similarly to our
ucode_sequencer_write primitive. The ability of the hook to
disable itself is fundamental to making the microcode tracing
work: the CPU would otherwise enter an infinite loop when
resuming execution at the same address.

We apply hooks that redirect execution to our custom patch
to every possible microcode address. Thus, when executing an
instruction I, the framework dumps the timestamp at which
each specific µop has been executed. Since there are a limited
number of match registers, the framework iteratively executes
the instruction I, each time registering a subset of the hooks
it needs and collecting subtraces. In our implementation, we
register one hook at a time for simplicity. In a post-processing
stage, we reorder the µops based on the timestamp to obtain an
instruction trace. Since the instruction I is executed multiple
times, it must have a deterministic microcode control flow to
obtain a coherent trace.

Algorithm 1 shows the pseudocode of the microcode hook
that is installed in the CPU to collect the timestamp counter
and resume execution. Algorithm 2 shows the pseudocode
of the tracing collection stage algorithm. As we can only
hook even microcode addresses, when two even addresses are
executed contiguously, we infer in the post-processing stage
that the odd address between the two has also been executed.

Algorithm 2: Pseudocode of the microcode tracing
algorithm.

function trace_instruction(I)
trace ← []
// microcode addresses go
// from 0 to 0x7c00 in GLM
for addr in 0 .. 0x7c00 do

install_hook(addr)
saved_ts ← 0
start_ts ← read_clock()
// this triggers the

dump_ts_and_resume hook if the
microcode of I executes ‘addr‘.

// the microcode hook removes itself
and saves the timestamp in a global
variable ‘saved_ts‘

execute(I)
end_ts ← saved_ts
if end_ts > 0 then

trace.append(end_ts - start_ts,
addr)

end
end
return sort(trace)

5) Customizing rdrand: With CustomProcessingUnit’s
microcode hooking, patching, and tracing capabilities, we can
customize the semantics of x86 instructions. As a proof of
concept, we customize the behavior of the rdrand instruction.
In most x86 processors, this generates a hardware-generated
cryptographically secure random number. The carry flag in the
rflags register indicates the success or failure of the operation
after execution.

We trace the execution of rdrand to determine which µop
to hook. Listing 2 shows the full execution trace. Analysis
of the trace shows the semantics of the instruction reflected
in its µops: it reads the hardware-generated random number
by reading I/O port 0x40004e00 at address 0x1866, whose
value is returned in the specified register (µop 0x186a). The
carry flag is updated based on the value returned, conditionally
assigning the bit 1 to the temporary register tmp2 (address
0x1869) and updating the rflags register (address 0x18c).

To patch the instruction semantics, we only need the in-
struction entry point in the MSROM: address 0x0428. We use
CustomProcessingUnit to hook this entry point and redirect
execution to our custom patch in MSRAM. Listing 3 shows
our patch to make rdrand return “Hello World!” in the
registers rax and rbx. We verify the patch works by repeated
execution of rdrand.

In the following sections, we demonstrate how Custom-
ProcessingUnit facilitates microcode reverse engineering and
customization. We reverse-engineer the confidential microcode
update algorithm and present three other case studies illus-

rdrand_trace:
0428: tmp4:= ZEROEXT_DSZ32(0x0000002b)
0429: tmp2:= ZEROEXT_DSZ32(0x40004e00)
042a: tmp0:= ZEROEXT_DSZ32(0x00000439) SEQW GOTO U1861
1861: tmp1:= READURAM(0x0035, 64)
1862: TESTUSTATE(SYS, 0x20)? SEQW GOTO U1866
1866: tmp1:= PORTIN_DSZ64_ASZ16_SC1(tmp2)
1868: tmp1:= OR_DSZ64(0x00000000, tmp1)
1869: tmp2:= SELECTCC_DSZ64_CONDNZ(tmp1, 0x00000001)
186a: r64dst:= ZEROEXT_DSZ32N(tmp1)
186c: MOVEINSERTFLGS_DSZ32(tmp2) SEQW UEND0

Listing 2: µop execution trace of the rdrand instruction.

.org 0x7c00

.patch 0x0428 # RDRAND ENTRY POINT
rax:= ZEROEXT_MACRO(0x6f57206f6c6c6548) # "Hello Wo"
rbx:= ZEROEXT_MACRO(0x21646c72) # "rld!\\x00"

Listing 3: rdrand patch that makes the instruction return
“Hello World!” in the registers rax-rbx.

trating how microcode customization can improve software
performance and security.

IV. CASE STUDY: REVERSE-ENGINEERING THE
MICROCODE UPDATE ROUTINE

The details of the decryption and validation performed in
the microcode update routine are not documented by Intel [43].
An Intel patent describes that the patch is validated in a secure
memory separate from the microcode RAM and is encrypted
using public-key encryption. In particular embodiments, a
private key and public key hash value are embedded within
the CPU, and the patch is signed with 2048-bit RSA [69].
Experimental timing and fault analysis in prior work supports
the hypothesis that 2048-bit RSA is used to sign a padded
SHA2 digest [20], [40].

We leveraged the microcode tracing and decompilation
capabilities of CustomProcessingUnit to precisely reverse-
engineer the full microcode routine for patch decryption and
verification. We release our microcode decryptor and parser
along with CustomProcessingUnit. Concurrently to our work,
Ermolov et al. released a tool to decrypt microcode updates
based on their GLM reverse engineering [33].

A. Reverse Engineering

A microcode update is triggered by writing the linear
address of the microcode update loaded in memory to the
IA32_BIOS_UPDT_TRIG MSR. To trace the update with our
microcode tracer, we need to repeat the instruction sequence
(see Section III-B4). Since the same µcode update cannot be
applied multiple times, and applying a µcode update would
override the MSRAM and match register that we use for
tracing, we must corrupt the microcode update so that the
update fails.

We corrupt the single byte that produces a failing update
with the maximum latency. Intuitively, the failing update with

metadata nonce RSA mod RSA exp RSA sig ucode patch

wrmsr move ucode patch to 0xfeb01000

SHA256

check

check

nonce CPU secretCPU secret

key expansion RC4 key

discard first
0x200 bytes

decrypt

SHA256 RSA verify

parse ucode

Fig. 3: High level overview of the µcode update algorithm for
GLM CPUs.

the maximum latency should provide a repeatable µop trace
that most closely resembles a successful update. We repeatedly
corrupt a single byte in the µcode update and track the time
it takes the update to fail. We identify the maximum failure
latency at the offset 0x1c0 in the update signature. This
produces an update that fails at the signature verification stage,
just before actually applying the update to MSRAM.

Using CustomProcessingUnit, we produce a full trace of
the faulty microcode update routine and reverse-engineer it
with the help of our decompiler. Figure 3 shows a high-level
overview of the algorithm, illustrating how the important parts
of the µcode update are parsed and verified by the CPU before
applying the update.
Decryption Algorithm. The CPU first checks the validity of
the pointer passed to the wrmsr instruction, erroring out for
non-canonical addresses, addresses that may wrap around the
address space, and patch sizes > 256KB or < 646B. After these
basic checks, the µcode update routine sets the last bit of the
CRBUS address 0x51b. As we will detail in the following
paragraphs, this enables a secure memory region at physical
addresses 0xfeb00000-0xfec00000. It then copies the µcode
patch from the user-specified address to 0xfeb01000 in the
secure region to check and decrypt it in place. The range
0xfeb00000-0xfeb01000 of the secure memory is used as
a scratch memory area to temporarily hold variables and
metadata for the cryptographic algorithms used in the routine.

After copying the patch, the routine checks basic metadata.
It ensures that the cpuid of the CPU is supported by the update
and that the security version number of the new update is not
lower than the number in the currently loaded update. It then
initializes a SHA256 state in the scratch range and computes
the SHA256 of the RSA modulus stored in the µcode update
(bytes 0xb0 to 0x1b0), verifying that it matches a known hard-
coded hash (a1b4b7417f0fdcdb0feaa26eb5b78fb2cb86153f0c
e98803f5cb84ae3a45901d). It checks that the RSA exponent
(bytes 0x1b0 to 0x1b4) is 0x11 (17).

The routine then proceeds to compute the decryption key
for the µcode update. It generates a seed combining a 32-byte
nonce from the µcode update (bytes 0x90 to 0xb0) with a
16-byte prefix and suffix. This is a hard-coded value from the
µcode routine (0e77b29d9e91765da26648998b6813ab) which
we call the CPU secret. The 64-byte seed is expanded to 256B
by recursively computing the SHA256 hash eight times and
saving each 32-byte internal state. The resulting 256B are used
to initialize an RC4 keystream.

The first 512B of the RC4 keystream are discarded, and
then the µcode routine proceeds to decrypt the microcode
using RC4. Next, the decrypted µcode is cryptographically
verified. The routine computes the SHA256 of the resulting
patch, including patch metadata (e.g., µcode revision number,
release date, length, cpuid target, and nonce), and verifies this
against the RSA signature.
Patch Application. Once the update is verified, the patch is
applied. Reverse engineering the decrypted microcode update
patch routine shows that a microcode update is a custom byte-
code that the CPU decodes in an interpreter loop to execute
various commands while updating. Such commands include:
resetting or writing microcode RAM, sequence words and
match registers; sending commands to internal components
through the CRBUS (e.g., to disable match registers during the
update); writing internal buffers; invoking custom microcode
routines; and even control flow commands to decode different
commands based on the CPU state.
Secure Memory. To prevent the decrypted patch from being
read or tampered with, the update process must use a secure
memory region. We observe that microcode is decrypted at the
temporary physical address 0xfeb01000. Attempting to read
this address during normal execution returns 0xff, as occurs
when trying to read other protected memory regions such as
SGX enclave memory. The address appears to be dynamically
enabled for the microcode update process by writing a bit to
the CRBUS address 0x51b. It has a fast access time (≈ 20
cycles), fits up to 256KB of data before a replacement policy
is applied, and content is not shared between cores. Based on
these observations, we conclude that this address is actually a
special view on the L2 cache. This matches an embodiment
described in an Intel patent, in which access to a cache is
blocked to all other operations during decoding, validation,
and installation of the update [69].

B. Security Analysis

The microcode is encrypted and signed to prevent reverse
engineering and tampering. In this section, we investigate
the effectiveness of the actual update-routine implementation
towards those guarantees. Bypassing encryption would allow
microcode to be analyzed on other Intel microarchitectures
for which the CPU secret has not yet been leaked, while
bypassing anti-tampering would enable the loading of arbi-
trary microcode on CPUs without Red Unlock, with all the
associated security risks and customization benefits that en-
tail. Although we specifically analyze our reverse-engineered

GLM implementation, we expect many of these findings to
generalize to other microarchitectures.
RC4 Encryption. RC4 is vulnerable to many known at-
tacks [12], [49], although some mitigations are in place in the
routine. The key (CPU secret) length of 16B is sufficient to
prevent brute-forcing, and the additional use of a unique 16B
nonce (i.e., initialization vector, or IV) to initialize the key
expansion prevents keystream reuse attacks [12]. As the IV
is included in the RSA signature, the attacker cannot modify
it, preventing chosen-IV attacks. RC4’s weak key schedule
leads to statistical bias in the generated keystream, making it
vulnerable to related-key recovery attacks when the key and IV
are combined together trivially, for example, via concatenation
as they are in the microcode routine [49]. However, the
routine does discard the initial 512B of the keystream to
reduce bias. While attacks have been demonstrated exploiting
bias in later bytes, these require high volumes of ciphertexts
(> 1000000 [49]), whereas very few microcode updates are
published. Currently, only 453 Intel production microcode
patches are available in a well-known repository [59], and
as these cover multiple microarchitectures, they also do not
all use the same key. Therefore, these mitigations are likely
sufficient in practice, provided that (as is extremely likely)
microcode updates continue to be produced in low volumes.
RSA Signature. The use of RSA provides strong anti-
tampering protection. The 2048-bit modulus is sufficient to
prevent brute-forcing, PKCS#1 v1.5 padding is used, and
the signature check appears experimentally to be constant-
time [40].

Several methods are known to bypass RSA signatures when
the public key is not correctly checked [10], [60]. However,
while the RSA modulus and exponent for the signature are
provided directly in the update metadata, and are therefore
attacker-controlled, they must match the expected values hard-
coded in the update routine. Thus, it is not possible to pass
different public key information, replacing the modulus or
exponent to bypass the signature verification.

The hash that the RSA signature is computed on includes
the µcode update metadata (see Section IV). This prevents
metadata tampering, such as changing the security revision
number to downgrade the microcode or modifying the cpuid
value to apply a patch for a different CPU model. However,
some of these metadata values are used before being verified.
The length of the microcode update is included in the hash, but
it is actively used before. Since the algorithm includes checks
on the minimum and maximum values, we could not leverage
such a potential time-of-check-time-of-use vulnerability to,
e.g., cause integer overflows in the routine.
Corrupting Updates. An attacker could try to leverage a race
condition and corrupt the decrypted microcode in memory
before it is applied. However, the microcode is decrypted
in place inside the reserved secure memory area that we
hypothesize is the L2 cache. The view on the secure memory
is only enabled during microcode updates, and cores trying
to access its physical address during normal execution read
only 0xff. We verified that each core has a unique secure

memory area (as the L2 cache is not shared); thus, its content
cannot be modified by a different core during an update. Since
the update is triggered by a serializing wrmsr instruction, the
hyperthread parallel to the logical core executing the update
is frozen and cannot modify the secure memory either.

We can obtain partial leaks of decrypted microcode. We
achieve this by mapping the APIC MMIO region at the
address 0xfeb01000 that the microcode will be moved to. This
effectively makes the APIC MMIO region shadow the secure
memory region and hijack it from the microcode routine,
similar to the Memory Sinkhole attack [23]. However, we
cannot fully leak or corrupt updates due to the limitations on
the writable areas of the APIC MMIO region [43].

An alternative would be to map the APIC to the scratch
region used in the secure memory to corrupt the SHA256 state
used to compute hashes. While this is possible and corrupts
the output of the hash algorithms (which would bypass the
signature check), it also corrupts the hash of the RSA public
key, which is checked, and thus the update fails.
Microarchitectural Attacks. One could try to leverage mi-
croarchitectural attacks to leak microcode updates during
decryption. Most microarchitectural attacks require execution
on either the same core or a hyperthread during the update
and can only leak internal buffers close to the CPU, such
as the L1 cache or Line Fill Buffers [17], [56], [66], [70],
[71]. The secure memory is accessed in µcode using µops that
access directly uncacheable physical addresses, thus avoiding
caches. While the Line Fill Buffers could be filled with such
data, hyperthreading cannot be used during the update, and
internal buffers seem to be flushed afterward, making the
attack ineffective.

ÆPIC Leak targets structures deeper in the memory hier-
archy, i.e., the superqueue [14]. However, as the superqueue
holds entries flushed from the L2 cache to the LLC, the
decrypted microcode does not pass through. An inverse attack
could attempt to leverage ÆPIC Leak to insert values from
the superqueue. By modifying the content of the superqueue
before the update and once again mapping the APIC MMIO
region over the secure scratch memory, an attacker could make
the CPU read leaked values from the superqueue instead and
thus corrupt computations with finer control. However, the
µcode update routine also flushes internal buffers before the
update.

V. CASE STUDY: X86 POINTER AUTHENTICATION CODES

A. Background

Pointer Authentication Codes (PACs) aim to protect sen-
sitive pointers from attacks that may leverage memory cor-
ruption vulnerabilities to hijack the control flow. PACs were
introduced in ARMv8.3 [5] and are used in several ARM-
based systems to provide strong security guarantees [63]. A
PAC is a message authentication code embedded in the high
bits of the pointer it protects. The code depends on the pointer
itself, a 64-bit context, and a secret key from a set of five
possible keys. The algorithm used to compute the code is
vendor-specific [8], but the standard recommends the QARMA

family of tweakable block ciphers [7]. On most CPUs, PAC
is implemented directly in hardware in a single µop [26].

The ARM instruction set provides different instructions to
compute the PAC and embed it in the pointer (e.g., pacia,
pacib), to verify and remove it (autia, autib), or to simply
clear it. The suffix of the instruction selects which key is
used to compute or verify the signature. Upon successful
verification, aut instructions remove the PAC from the high
bits of the pointer, while on verification failure, the bits are not
cleared. Thus, once signed, a pointer can be accessed only after
being verified, and causes a memory access fault otherwise.

B. Implementation

We present the first public implementation of PAC on
x86, enabling cheap and strong hardware-based control-flow-
integrity protection on Intel platforms. We implement instruc-
tions to sign and verify 64-bit pointers leveraging CustomPro-
cessingUnit.

As a proof of concept, we define two new microcode
routines that sign and verify a context and a pointer, with
a PAC saved in the pointer’s high bits. The size of the PAC
can be customized in our design, provided that it does not
conflict with the used bits in the pointers, and any unused
microcoded instructions can be chosen as the signing and
verification instructions. By default, we select a 16-bit PAC
and patch verw and verr, programming the match registers
to hook them with our routines.

Our microcoded signing algorithm uses a single round of
SipHash [6]. The SipHash algorithm has been developed for
keyed hashing optimized for small inputs, which is exactly
our use case with 64-bit pointers. We favor it over QARMA
as the latter uses bit shuffles, which are faster in hardware but
costly in microcode. We define a 64-bit secret key to be kept
in an internal buffer of the CPU, the staging buffer, so that it
is never architecturally exposed.

Listing 5 in Section A shows our microcode for the PAC
signing algorithm. The authentication routine is similar, but in
addition, it verifies that the existing PAC on the input pointer
matches the one generated from scratch, corrupting the high
bits if they do not match. Our x86 microcode implementation
of the PAC signature takes 25 clock cycles to execute, while
the authentication operation takes 26. We verify that the
implementation works as expected by signing pointers and
verifying that they authenticate when not tampered with and
cause an invalid memory access otherwise.

C. Security Analysis

For the security analysis of our x86 PAC implementation,
we focus on the resistance of our implementation to specu-
lative execution attacks such as PACMAN [65]. We refer the
reader to the original SipHash paper for a security evaluation
of the SipHash algorithm [6].
PACMAN. This attack bypasses pointer authentication by
speculatively authenticating a corrupted pointer, using side
channels to identify a correct PAC. Because the authentication
routine is speculatively rather than architecturally executed, the

attack can brute-force the PAC without causing the program
to crash.

We re-implement the attack on our CPU, effectively de-
veloping the first x86 PACMAN attack. As in the original
paper, we leverage a PACMAN gadget that authenticates and
then accesses a pointer behind a branch whose direction we
can determine. We train the branch prediction by executing
the branch with a valid pointer with a correct PAC for 10
iterations. We then use an artificial memory-corruption vulner-
ability to override the pointer with an attacker-controlled value
and PAC and change the branch condition so the authentication
instructions are no longer architecturally executed. While the
gadget is not executed architecturally, it is executed specula-
tively, and the pointer, if valid, is dereferenced speculatively.
For simplicity, we make the pointer point to shared memory
between the attacker and the victim and use Flush+Reload [74]
to infer whether the pointer location was accessed, i.e., the
PAC was correct.

Implementing the attack on our x86 PAC implementation
fails to leak valid PAC values. This is due to the smaller
Reorder Buffer (ROB, 78 entries) and Physical Register File
(PRF, 56 entries) in GLM CPUs [4]. Our x86 PAC implemen-
tation consists of 54 µops, filling up the entire speculative
window and preventing subsequent speculative access. How-
ever, on a CPU with a wider ROB and PRF, the attack would
succeed as it is the PAC design, not the implementation, that
is vulnerable to PACMAN. To test this hypothesis, we write a
weaker version of the PAC implementation in 27 µops, which
only partially implements SipHash. With this shorter PAC
implementation, the attack successfully brute-forces a valid
PAC for a given pointer in less than a second.
Mitigation. We leverage CustomProcessingUnit to investi-
gate how PACMAN could be mitigated in microcode. As
a first attempt, we could add a speculation barrier to the
PAC implementation. However, such a solution would incur
considerable overhead, slowing the execution of the PAC
instruction (by around 10 cycles) and other instructions in the
pipeline. Moreover, an attacker could find a gadget where the
pointer authentication occurs on a non-speculative path while
the access occurs on a speculative one, re-enabling the attack.

Thus, we investigate a solution that does not involve fences.
The core concept is to make the pointer-authentication op-
erations fault when an invalid PAC is detected while also
removing the PAC from the pointer. This means that the
pointer is always valid in the speculative path, removing the
side channel on PAC validity. Faulting ensures that memory
corruption attacks using corrupted pointers architecturally still
fail. Our mitigated implementation that triggers an exception
when detecting an invalid PAC has no overhead with respect
to the original, and is the first public PAC implementation not
vulnerable to the PACMAN attack. However, one drawback is
that this design re-enables Spectre attacks [50] using corrupted
pointers in the speculative path. A further remaining attack
surface is the use of a port contention side-channel [3] to
detect the micro-operations that cause a fault in the specu-
lative path. This attack surface could be closed by disabling

hyperthreading or preventing an attacker from running parallel
to the victim.

VI. CASE STUDY: µSOFTWARE BREAKPOINTS

A. Background

Software breakpoints are widely used both for debug-
ging [39] and instrumentation [36], [58], [61], [76]. The int3
(0xcc) instruction triggers an interrupt calling the debug ex-
ception handler with a breakpoint exception [43]. The interrupt
routine handling the breakpoint exception in the kernel then
generates a SIGTRAP signal to the user space process. Thus, for
every breakpoint hit during execution, the application issuing
a breakpoint incurs a context switch to the interrupt routine in
kernel space and another context switch back to user space.

Applications can leverage interfaces provided by the op-
erating system to debug child processes through breakpoints
(e.g., ptrace for Linux). These make it easy to trigger the
execution of specific instructions once a breakpoint is hit.
While such interfaces are convenient, they incur significant
overhead (up to 10 000 cycles in our system) due to the
multiple context switches between processes. It is, therefore,
crucial to work around this performance limitation for high-
performance instrumentation.

One such high-performance application of breakpoint-based
instrumentation is binary-level fuzzing. Fuzzing is one of
the most prominent techniques to find memory-corruption
vulnerabilities [37], [57], [62], [75]. It uses coverage-guided
feedback to discover random inputs that exercise different
paths of a program to expose bugs. While source-level fuzzing
involves custom compilation passes to insert coverage col-
lection instrumentation, binary-level fuzzing usually relies on
binary instrumentation [72] or breakpoint-based instrumenta-
tion [36], [58], [61], [76].

Breakpoint-based instrumentation relies on aggressive opti-
mizations to mitigate the performance hit of software break-
points, e.g., removing the breakpoint completely once it has
first been hit and an input reaching that coverage point has
been collected [36]. Such an optimization eventually converges
to zero performance overhead but sacrifices useful path infor-
mation on branches that have already been hit [38].

B. Implementation

We leverage CustomProcessingUnit to implement a new
type of software breakpoints that we name µsoftware break-
points (bp). The idea is to run the breakpoint logic directly at
the µcode level. To implement these, we change the semantics
of the icebp/int1 (0xf1) instruction, which should not be
used by normal software. Placing the breakpoint logic directly
in microcode avoids the cost of interrupts or context switches
and is thus extremely fast. The OS would provide an interface
to program µsoftware breakpoints, loading the required µcode
in the running core. No further interaction is needed, as each
icebp instruction will then execute the bp logic.

As a proof of concept, we implement µsoftware breakpoints
for coverage collection in binary-level fuzzing. We save the
address of the coverage map in an internal buffer of the CPU

.org 0x7c00

.patch 0xc40 # icebp entry point

.entry 0

let [cov_map] := tmp1
let [rip] := tmp0

load address of coverage map from staging buffer
[cov_map]:= LDSTGBUF_DSZ64_ASZ16_SC1(0xba00)

get instruction pointer low bits
[rip]:= ZEROEXT_DSZ64(IMM_MACRO_ALIAS_RIP) !m0
[rip]:= AND_DSZ64(0xffff, [rip])

set coverage for basic block
STADPPHYS_DSZ8_ASZ64_SC1([cov_map], [rip], 0x01)

Listing 4: µsoftware breakpoint to collect code coverage.

for ease of access inside microcode and simply update the
coverage based on the current instruction pointer during break-
point execution. Listing 4 shows an example implementation
of µsoftware breakpoints for coverage-guided fuzzing. Each
time an icebp instruction is executed, the coverage is updated
directly and saved into the coverage map with no interrupt or
context switch.

As a microbenchmark, we measure the overhead of execut-
ing a single µsoftware breakpoint to collect coverage infor-
mation, averaging 1 million executions. For each µsoftware
breakpoint, the CPU has a latency of 10 cycles, which
is mostly due to the switch to the microcode RAM by
the Microcode Sequencer. This is around 1000x faster than
ptrace-based instrumentation. To compare with the fastest
non-microcoded implementation, we also implement the same
logic for coverage collection directly in the kernel debug
exception handler. While such an implementation is faster than
user space coverage collection, we still measure a latency of
388 cycles, making µsoftware breakpoints 38.8x faster.

VII. CASE STUDY: CONSTANT-TIME µCODE DIVISION

A. Background

Side-channel attacks allow adversaries to leak secret values
by observing secret-dependent side effects of computation,
such as differences in execution time or microarchitectural
state [9], [56]. Constant-time programming aims to produce
algorithms resistant to timing side-channel attacks, imple-
mented so that the same instruction and memory access
patterns occur regardless of the secret input [9], [44]. Several
solutions have been proposed to automatically rewrite software
to be constant-time [13], [19], [64], [67], [73]. They typically
involve transforming programs during compilation to consis-
tently execute the same sequence of operations irrespective of
their input.

While this is effective for instruction traces and memory
access patterns, there are some instructions whose latency
depends on the input values [46]. Examples of such instruc-
tions are division or remainder operations and many floating-
point operations. Executing these instructions on secret data

may leak information about their operands or the result.
Automated solutions to mitigate such side channels rely on
software wrappers implementing these operations in constant-
time. However, substituting a single instruction with a full
software wrapper incurs substantial overhead. It increases the
code size and requires complete recompilation of the program
or precise binary patching.

B. Implementation
As a case study, we patch one of these instructions, unsigned

integer division (div), to provide constant-time guarantees at
the microcode level instead. Intel CPUs implement division di-
rectly in hardware [18], but we verified that the div instruction
itself is microcoded and thus can be patched. The microcode
of div simply calls the µops that control hardware operations
to perform the division, taking between 22 and 40 cycles to
execute.

We take the state-of-the-art 64-bit constant-time division
software implementation from Constantine [13] and reim-
plement it in microcode. The Constantine software imple-
mentation takes 694 cycles. Our microcode implementation
(depicted in Listing 6 in Section B) takes 438 cycles to
execute, 1.58x faster than in software. This speedup is thanks
to the reduced number of fetched and decoded instructions,
higher instruction cache locality, reduced register pressure,
and faster microcode jumps (that have control over the branch
predictors).

This has the further advantage of not requiring any trans-
formation of the input program. Once the patch is installed,
any div instruction executed is constant-time, and it can
be enabled and disabled as needed to prevent unnecessary
overhead when timing guarantees are not required.

VIII. CONCLUSION

In this work, we presented a static and dynamic analysis
framework for reverse engineering of Intel x86 microcode
for the Goldmont microarchitecture. We demonstrated our
framework’s utility and the potential security and performance
benefits of microcode customization in four case studies.

Our framework builds upon research reverse engineering
Intel’s debug infrastructure [35]. Debug infrastructure is cru-
cial for post-silicon validation, but its security should rely on
transparent mechanisms rather than on security by obscurity.
Given our increasing reliance on critical digital infrastructure,
both manufacturer documentation [45] and reverse engineering
efforts will play an important role in ensuring the underlying
hardware is secure.

ACKNOWLEDGMENTS

We would like to thank Mark Ermolov, Maxim Goryachy,
and Dmitry Sklyarov for their extensive research into and
reverse engineering of the Intel Management Engine, Intel
debug infrastructure, and Intel microcode, without which this
work would not have been possible. Any opinions, findings,
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the funding parties or of the authors’ affiliations.

REFERENCES

[1] ABEL, A., AND REINEKE, J. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchitectures.
In ASPLOS (2019).

[2] ALAOUI, Y. Exploiting Intel’s Management Engine - Part 2: Enabling
Red JTAG Unlock on Intel ME 11.x (INTEL-SA-00086), https://kakaro
to.homelinux.net/2019/11/exploiting-intels-management-engine-part-2-
enabling-red-jtag-unlock-on-intel-me-11-x-intel-sa-00086/ 2019.

[3] ALDAYA, A. C., BRUMLEY, B. B., UL HASSAN, S., GARCÍA, C. P.,
AND TUVERI, N. Port Contention for Fun and Profit. In S&P (2019).

[4] ANTON ERTL. Reorder buffer size of various CPUs, http://www.comp
lang.tuwien.ac.at/anton/robsize/ 2019.

[5] ARM. Arm Architecture Reference Manual for A-profile architecture,
2022.

[6] AUMASSON, J.-P., AND BERNSTEIN, D. J. SipHash: a fast short-input
PRF. Cryptology ePrint Archive, Paper 2012/351, 2012.

[7] AVANZI, R. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes. IACR Transactions on Symmetric Cryptology
(2017).

[8] AZAD, B. Examining Pointer Authentication on the iPhone XS, https:
//googleprojectzero.blogspot.com/2019/02/examining-pointer-authentic
ation-on.html 2019.

[9] BARTHE, G., GRÉGOIRE, B., AND LAPORTE, V. Secure Compilation of
Side-Channel Countermeasures: The Case of Cryptographic “Constant-
Time”. In CSF (2018).

[10] BLEICHENBACHER, D. Forging Some RSA Signatures with Pencil and
Paper. CRYPTO (2006).

[11] BÖLÜK, C. Speculating The Entire X86-64 Instruction Set In Seconds
With This One Weird Trick, https://blog.can.ac/2021/03/22/speculating
-x86-64-isa-with-one-weird-trick 2021.

[12] BORISOV, N., GOLDBERG, I., AND WAGNER, D. Intercepting Mobile
Communications: The Insecurity of 802.11. In MobiCom (2001).

[13] BORRELLO, P., D’ELIA, D. C., QUERZONI, L., AND GIUFFRIDA,
C. Constantine: Automatic Side-Channel Resistance Using Efficient
Control and Data Flow Linearization. In CCS (2021).

[14] BORRELLO, P., KOGLER, A., SCHWARZL, M., LIPP, M., GRUSS, D.,
AND SCHWARZ, M. ÆPIC Leak: Architecturally leaking uninitialized
data from the microarchitecture. In USENIX Security (2022).

[15] BOSCH, P. Intel LDAT notes, https://pbx.sh/ldat 2020.
[16] BOSCH, P. Under the hood of a CPU: Reverse Engineering the P6

Microcode. In Hardwear.io Netherlands (2020).
[17] CANELLA, C., GENKIN, D., GINER, L., GRUSS, D., LIPP, M.,

MINKIN, M., MOGHIMI, D., PIESSENS, F., SCHWARZ, M., SUNAR, B.,
VAN BULCK, J., AND YAROM, Y. Fallout: Leaking Data on Meltdown-
resistant CPUs. In ACM CCS (2019).

[18] CARTER, T., AND ROBERTSON, J. Radix-16 signed-digit division. IEEE
Transactions on Computers (1990).

[19] CAULIGI, S., SOELLER, G., JOHANNESMEYER, B., BROWN, F.,
WAHBY, R. S., RENNER, J., GRÉGOIRE, B., BARTHE, G., JHALA, R.,
AND STEFAN, D. FaCT: A DSL for Timing-Sensitive Computation. In
PLDI (2019).

[20] CHEN, D. D., AND AHN, G.-J. Security Analysis of x86 Processor
Microcode. Bachelor’s Thesis, Arizona State University, 2014.

[21] COE, T. Inside the Pentium-fdiv Bug. Doctor Dobb’s Journal (1995).
[22] DAVIS, J., SLOBODOVA, A., AND SWORDS, S. Microcode Verification

- Another Piece of the Microprocessor Verification Puzzle. In Interna-
tional Conference on Interactive Theorem Proving (2014).

[23] DOMAS, C. The Memory Sinkhole. In BlackHat USA (2015).
[24] DOMAS, C. Breaking the x86 ISA. In BlackHat USA (2017).
[25] DOMAS, C. God Mode Unlocked: Hardware Backdoors in x86 CPUs.

In BlackHat USA (2018).
[26] DOUGALL, J. Apple M1 Microarchitecture Research, https://dougallj.g

ithub.io/applecpu/firestorm.html 2021.
[27] DUFLOT, L., ETIEMBLE, D., AND GRUMELARD, O. Using CPU system

management mode to circumvent operating system security functions.
CanSecWest (2006).

[28] EAGLE, C., AND NANCE, K. The Ghidra Book: The Definitive Guide.
No Starch Press, 2020.

[29] EASDON, C. Undocumented CPU Behavior: Analyzing Undocumented
Opcodes on Intel x86-64. Talk, https://www.cattius.com/images/undoc
umented-cpu-behavior.pdf June 2018.

[30] EASDON, C., SCHWARZ, M., SCHWARZL, M., AND GRUSS, D. Rapid
Prototyping for Microarchitectural Attacks. In USENIX Security (2022).

[31] ERMOLOV, M., SKLYAROV, D., AND GORYACHY, M. glm-ucode, https:
//github.com/chip-red-pill/glm-ucode 2020.

[32] ERMOLOV, M., SKLYAROV, D., AND GORYACHY, M. Chip Red Pill:
How we Achieved the Arbitrary [micro]Code Execution inside Intel
Atom CPUs. In OffensiveCon 22 (2022).

[33] ERMOLOV, M., SKLYAROV, D., AND GORYACHY, M. MicrocodeDe-
cryptor, https://github.com/chip-red-pill/MicrocodeDecryptor 2022.

[34] ERMOLOV, M., SKLYAROV, D., AND GORYACHY, M. uCodeDisasm,
https://github.com/chip-red-pill/uCodeDisasm 2022.

[35] ERMOLOV, M., SKLYAROV, D., AND GORYACHY, M. Undocumented
x86 Instructions to Control the CPU at the Microarchitecture Level in
Modern Intel Processors. Journal of Computer Virology and Hacking
Techniques (2022).

[36] FALK, BRANDON. Mesos, https://github.com/gamozolabs/mesos 2020.
[37] FIORALDI, A., MAIER, D., EISSFELDT, H., AND HEUSE, M. AFL++:

Combining Incremental Steps of Fuzzing Research. In WOOT (2020).
[38] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI, Z., AND CHEN, Z.

CollAFL: Path Sensitive Fuzzing. In IEEE S&P (2018).
[39] GNU. GDB: The GNU Project Debugger, https://www.sourceware.org

/gdb 2022.
[40] HAWKES, B. Notes on Intel Microcode Updates, https://inertiawar.com

/microcode 2012.
[41] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann, 2011.
[42] INTEL. Application Note AP-526: Optimizations for Intel’s 32-Bit

Processors, 1995.
[43] INTEL. Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3 (3A, 3B & 3C): System Programming Guide, 2019.
[44] INTEL. Guidelines for Mitigating Timing Side Channels Against Cryp-

tographic Implementations. Developer Zone - Secure Coding (2020).
[45] INTEL. Intel Debug Technology, https://www.intel.com/content/www/

us/en/developer/articles/technical/software-security-guidance/secure-c
oding/intel-debug-technology.html 2021.

[46] INTEL. Data Operand Independent Timing Instruction Set Architecture
(ISA) Guidance, https://www.intel.com/content/www/us/en/developer/ar
ticles/technical/software-security-guidance/best-practices/data-operand-
independent-timing-isa-guidance.html 2022.

[47] INTEL. Intel® 64 and IA-32 Architectures Optimization Reference
Manual, 2022.

[48] KAIVOLA, R., GHUGHAL, R., NARASIMHAN, N., TELFER, A., WHIT-
TEMORE, J., PANDAV, S., SLOBODOVÁ, A., TAYLOR, C., FROLOV, V.,
REEBER, E., AND NAIK, A. Replacing Testing with Formal Verification
in Intel® Core™ i7 Processor Execution Engine Validation. In CAV
(2009).

[49] KLEIN, A. Attacks on the RC4 stream cipher. Designs, Codes and
Cryptography 48, 3 (2008).

[50] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T.,
SCHWARZ, M., AND YAROM, Y. Spectre Attacks: Exploiting Specu-
lative Execution. In S&P (2019).

[51] KOGLER, A., WEBER, D., HAUBENWALLNER, M., LIPP, M., GRUSS,
D., AND SCHWARZ, M. Finding and Exploiting CPU Features using
MSR Templating. In IEEE S&P (2022).

[52] KOLLENDA, B., KOPPE, P., FYRBIAK, M., KISON, C., PAAR, C., AND
HOLZ, T. An Exploratory Analysis of Microcode as a Building Block
for System Defenses. In ACM CCS (2018).

[53] KOPPE, P., KOLLENDA, B., FYRBIAK, M., KISON, C., GAWLIK,
R., PAAR, C., AND HOLZ, T. Reverse Engineering x86 Processor
Microcode. In USENIX Security (2017).

[54] KWAN, D., SHTOYK, K., SEREBRYANY, K., LIFANTSEV, M. L., AND
HOCHSCHILD, P. SiliFuzz: Fuzzing CPUs by proxy. Google Research,
2021.

[55] LI, W. System-on-chip devices and methods for testing system-on-chip
devices. Patent WO2017164872A1, 2017.

[56] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading Kernel Memory
from User Space. In USENIX Security (2018).

[57] LLVM PROJECT. libFuzzer – a library for coverage-guided fuzz testing.,
https://llvm.org/docs/LibFuzzer.html 2018.

[58] LUO, S. trapfuzzer: Coverage-guided Binary Fuzzing with Breakpoints.
In HITB SecConf (2021).

[59] MAVROPOULOS, P. CPUMicrocodes: Intel, AMD, VIA & Freescale
CPU Microcode Repositories, https://github.com/platomav/CPUMicro
codes 2022.

[60] MISARSKY, J. F. How (not) to Design RSA Signature Schemes. In
Public Key Cryptography (1998).

[61] NAGY, S., AND HICKS, M. Full-speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-guided Tracing. In IEEE S&P (2019).

[62] PAYER, M. The Fuzzing Hype-Train: How Random Testing Triggers
Thousands of Crashes. IEEE Security and Privacy (2019).

[63] QUALCOMM TECHNOLOGIES INC. Pointer Authentication on
ARMv8.3: Design and Analysis of the New Software Security Instruc-
tions, https://www.qualcomm.com/content/dam/qcomm-martech/dm-as
sets/documents/pointer-auth-v7.pdf 2017.

[64] RANE, A., LIN, C., AND TIWARI, M. Raccoon: Closing Digital Side-
Channels through Obfuscated Execution. In USENIX Security (2015).

[65] RAVICHANDRAN, J., NA, W. T., LANG, J., AND YAN, M. PACMAN:
Attacking ARM Pointer Authentication with Speculative Execution. In
ISCA (2022).

[66] SCHWARZ, M., LIPP, M., MOGHIMI, D., VAN BULCK, J., STECKLINA,
J., PRESCHER, T., AND GRUSS, D. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In ACM CCS (2019).

[67] SOARES, L., AND PEREIRA, F. M. Q. Memory-Safe Elimination of
Side Channels. In CGO (2021).

[68] SUTHERLAND, J., COULL, N., AND MACLEOD, A. CPU covert
channel accessible from JavaScript. CyberForensics (2014).

[69] SUTTON, J. A. Microcode Patch Authentication. Patent
US20030196096A1, 2003.

[70] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y.,
AND STRACKX, R. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In USENIX Security
(2018).

[71] VAN SCHAIK, S., MILBURN, A., ÖSTERLUND, S., FRIGO, P.,
MAISURADZE, G., RAZAVI, K., BOS, H., AND GIUFFRIDA, C. RIDL:
Rogue In-flight Data Load. In IEEE S&P (2019).

[72] VOSS, NATHAN. afl-unicorn: Fuzzing Arbitrary Binary Code, https:
//medium.com/hackernoon/afl-unicorn-fuzzing-arbitrary-binary-code-
563ca28936bf 2017.

[73] WU, M., GUO, S., SCHAUMONT, P., AND WANG, C. Eliminating
Timing Side-Channel Leaks Using Program Repair. In ISSTA (2018).

[74] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security (2014).

[75] ZALEWSKI, M. American Fuzzy Lop, https://github.com/Google/AFL
2021.

[76] ZHOU, C., WANG, M., LIANG, J., LIU, Z., AND JIANG, Y. Zeror:
Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling. In
ASE (2020).

APPENDIX A
X86 PAC SIGNING

Listing 5 shows the microcode routine for x86 PAC signing
leveraging a single round of SipHash.

APPENDIX B
CONSTANT-TIME µCODE DIVISION

Listing 6 shows our constant-time div microcode imple-
mentation.

APPENDIX C
PAPER ARTIFACT

We release our framework as open source at https://github
.com/pietroborrello/ghidra-atom-microcode (static analysis
module) and https://github.com/pietroborrello/CustomProces
singUnit (dynamic analysis module). We provide our artifact
under the stable DOI https://doi.org/10.5281/zenodo.7728760
to ensure a stable reference to our code is always available.
Our artifact includes the Ghidra processor module for static
analysis (subtree ghidra-processor-module) and the tracing
and patching framework for dynamic analysis.

Our static analysis framework models the semantics of
µcode operations. It eases the reverse engineering of GLM
µcode by providing decompiled code from the highly tangled
CPU microoperations. Combined with Ghidra, it provides
emulation and dataflow analysis capabilities on CPU µcode.

Our dynamic analysis framework provides the µcode tracing
and patching functionalities for Red-Unlocked GLM CPUs
through a custom UEFI BIOS, as described in the paper. We
include all the code for our case studies: x86 PAC, µsoftware
breakpoints, and constant-time µcode division.

.org 0x7c00

declare variables
let [ptr] := r64dst; let [v0] := tmp1
let [ctx] := r64src; let [v1] := tmp2
let [key] := tmp0; let [v2] := tmp3
let [key_addr] := 0xba40; let [v3] := tmp4
let [pac] := tmp5

--- initialize ---
[key] := LDSTGBUF_DSZ64_ASZ16_SC1([key_addr])
v0 = 0x736f6d6570736575 ^ key;
[v0] := ZEROEXT_MACRO(0x736f6d6570736575)
[v0] := XOR_DSZ64([v0], [key])
v1 = 0x646f72616e646f6d ^ ctx;
[v1] := ZEROEXT_MACRO(0x736f6d6570736575)
[v1] := XOR_DSZ64([v1], [ctx])
v2 = 0x6c7967656e657261 ^ key;
[v2] := ZEROEXT_MACRO(0x736f6d6570736575)
[v2] := XOR_DSZ64([v2], [key])
v3 = 0x7465646279746573 ^ ctx;
[v3] := ZEROEXT_MACRO(0x736f6d6570736575)
[v3] := XOR_DSZ64([v3], [ctx])

--- update ---
[v3] := XOR_DSZ64([v3], [ptr]) # v3 ^= ptr;
[v0] := ADD_DSZ64([v0], [v1]) # v0 += v1;
[v2] := ADD_DSZ64([v2], [v3]) # v2 += v3;
[v1] := ROL_DSZ64([v1], 0x0d) # v1 = RotateLeft<13>(v1);
[v3] := ROL_DSZ64([v3], 0x10) # v3 = RotateLeft<16>(v3);
[v1] := XOR_DSZ64([v1], [v0]) # v1 ^= v0;
[v3] := XOR_DSZ64([v3], [v2]) # v3 ^= v2;
[v0] := ROL_DSZ64([v0], 0x20) # v0 = RotateLeft<32>(v0);
[v2] := ADD_DSZ64([v2], [v1]) # v2 += v1;
[v0] := ADD_DSZ64([v0], [v3]) # v0 += v3;
[v1] := ROL_DSZ64([v1], 0x11) # v1 = RotateLeft<17>(v1);
[v3] := ROL_DSZ64([v3], 0x15) # v3 = RotateLeft<21>(v3);
[v1] := XOR_DSZ64([v1], [v2]) # v1 ^= v2;
[v3] := XOR_DSZ64([v3], [v0]) # v3 ^= v0;
[v2] := ROL_DSZ64([v2], 0x20) # v2 = RotateLeft<32>(v2);
[v0] := XOR_DSZ64([v0], [ptr]) # v0 ^= ptr;

--- finalize ---
[v2] := XOR_DSZ64([v2], 0xff) # v2 ^= 0xFF;
[v0] := ADD_DSZ64([v0], [v1]) # v0 += v1;
[v2] := ADD_DSZ64([v2], [v3]) # v2 += v3;
[v1] := ROL_DSZ64([v1], 0x0d) # v1 = RotateLeft<13>(v1);
[v3] := ROL_DSZ64([v3], 0x10) # v3 = RotateLeft<16>(v3);
[v1] := XOR_DSZ64([v1], [v0]) # v1 ^= v0;
[v3] := XOR_DSZ64([v3], [v2]) # v3 ^= v2;
[v0] := ROL_DSZ64([v0], 0x20) # v0 = RotateLeft<32>(v0);
[v2] := ADD_DSZ64([v2], [v1]) # v2 += v1;
[v0] := ADD_DSZ64([v0], [v3]) # v0 += v3;
[v1] := ROL_DSZ64([v1], 0x11) # v1 = RotateLeft<17>(v1);
[v3] := ROL_DSZ64([v3], 0x15) # v3 = RotateLeft<21>(v3);
[v1] := XOR_DSZ64([v1], [v2]) # v1 ^= v2;
[v3] := XOR_DSZ64([v3], [v0]) # v3 ^= v0;
[v2] := ROL_DSZ64([v2], 0x20) # v2 = RotateLeft<32>(v2);

pac = ((v0 ^ v1) ^ (v2 ^ v3)) << 48;
[pac] := XOR_DSZ64([v0], [v1])
[pac] := XOR_DSZ64([pac], [v2])
[pac] := XOR_DSZ64([pac], [v3])
[pac] := SHL_DSZ64([pac], 0x30)

sign ptr
[ptr] := XOR_DSZ64([pac], [ptr])

Listing 5: x86 PAC signature microcode routine leveraging a
single round of SipHash.

.org 0x7c00

.patch 0x6c8 # div entry point

.entry 0

let [dividend] := rax; let [temp1] := tmp3
let [divisor] := rcx; let [temp2] := tmp4
let [size] := 0x3f; let [temp3] := tmp5
let [quotient] := tmp0; let [temp4] := tmp7
let [temp] := tmp1; let [temp5] := tmp8
let [i] := tmp2; let [comp] := tmp6
[temp] := ZEROEXT_DSZ64(0x0); [i] := ZEROEXT_DSZ64([size])
[quotient] := ZEROEXT_DSZ64(0x0)

<loop>
if (i < 0) goto end;
UJMPCC_DIRECT_NOTTAKEN_CONDB([i], <end>)

temp = (temp << 1uLL) | ((dividend >> i) & 1);
[temp1]:= SHL_DSZ64([temp], 0x1)
[temp2]:= SHR_DSZ64([dividend], [i])
[temp2]:= AND_DSZ64([temp2], 0x1)
[temp] := OR_DSZ64([temp1], [temp2])

comp = (temp >= divisor);
[comp] := SUB_DSZ64([divisor], [temp])

temp -= comp? divisor : 0;
[temp3]:= SELECTCC_DSZ64_CONDB([comp], [divisor])
[temp] := SUB_DSZ64([temp3], [temp])

quotient |= comp ? 1uLL << i : 0;
[temp4]:= SHL_DSZ64(0x1, [i])
[temp5]:= SELECTCC_DSZ64_CONDB([comp], [temp4])
[quotient] := OR_DSZ64([quotient], [temp5])

i--; goto loop
[i] := SUB_DSZ64(0x1, [i]) SEQW GOTO <loop>

<end>
return quotient, ignore the remainder for simplicity
rax := ZEROEXT_DSZ64([quotient])
rdx := ZEROEXT_DSZ64(0x0)

Listing 6: Constant-time div microcode routine.

