
Reflections on Trusting Docker: Invisible 
Malware in Continuous Integration Systems

Florent Moriconi, Axel Neergaard, Lucas Georget, Samuel Aubertin, Aurélien Francillon

florent.moriconi@eurecom.fr 

mailto:florent.moriconi@eurecom.fr


Compilers are widely used

Most software is not written directly in machine code 
(assembler)

2



Usual software development process 

3

Write code in C, 
C++, Python, Java, 

Go, you-name-it

Ask a compiler to 
generate machine code

Run machine 
code



4

Write code in C, 
C++, Python, Java, 

Go, you-name-it

Ask a compiler to 
generate machine code

Run machine 
code

Clean source code Malicious compiler Malicious machine code

Usual software development process



Self-hosted architecture

5

Compiler source code Ask a compiler to 
generate machine code

Run machine 
code

Clean source code Malicious compiler Malicious machine code

initial infection + self-hosted architecture = persistent malware



Self-hosted architecture

6

Compiler source code Ask a compiler to 
generate machine code

Run machine 
code

Clean source code Malicious compiler Malicious machine code

initial infection + self-hosted architecture = persistent malware

[1] Ken Thompson, “Reflections on trusting trust,” Commun. ACM, vol. 27, no. 8, p. 761–763, aug 1984. 

“The moral is obvious. You can't trust code that you did not totally create yourself. [...] No amount of 
source-level verification or scrutiny will protect you from using untrusted code.”, Ken Thompson [1]



Revisiting Thompson idea

Is the Thompson idea applicable to Continuous 
Integration systems?

7

Is a vulnerability identified in 1984 still applicable in 2023?



What is continuous integration?

8

Github Actions

Gitlab CI

Travis CI

Jenkins

CircleCI



The use of custom images for CI

Modern CI are based on containers

Custom CI images are widely used

Why?
Avoid reinstalling your tools at each CI run

Consistent CI images between runs
Faster startup time

9



Self-hosted CI architecture is common

How do you build your custom CI images?

Using your CI!

This is a self-hosted architecture

10



Not all software in CI image are self-hosted

11

Not self-hosted
(i.e., X will not be used to 
build X)
🚫 Code linter
🚫 Code scanner
🚫 Docker daemon (DIND, 
host daemon)

Self-hosted
✅ Docker client
✅ Shell



Initial infection

- Malicious commit1

- history rewrite

- Compromise CI container2
- Dependency confusion3

- Image registry compromise

1 Q. Wu and K. Lu, “On the feasibility of stealthily introducing vulnerabilities in open-source software via hypocrite commits”, 2021
2 Ladisa et al., “SoK: Taxonomy of Attacks on Open-Source Software Supply Chains”, 2023, IEEE Symposium on Security and Privacy
3 Alex Birsan, “Dependency Confusion: How I Hacked Into Apple, Microsoft and Dozens of Other Companies”, 2021, Medium

12

Initial infection is required only once!



Infecting a Continuous Integration system

13



Malicious docker client can manipulate Dockerfile!

14
But also exfiltrating secrets in environment variables, scanning internal network, etc.



Proof of Concept

15

- Based on Gitlab CI
- Self-injecting on CI update
- Add authentication bypass backdoor to a Python API



Proof of Concept

16

$ curl http://127.0.0.1:8080?token=backdoortoken
Access allowed :)

Gitlab Runner
Docker client

SCM

CI

Production

Docker 
daemon

1. Alter build context

2. Hide extra logs

We will be at demo session!

http://127.0.0.1:8080?token=backdoortoken


Artifacts

Conclusion
Research paper

17

purl.org/trusting-docker/paper

purl.org/trusting-docker/code

Thompson’s idea can be applied to CI systems

Your CI system can be malicious even if the 
source code is clean of malicious code

Self-reproduction allow long-term compromise

Initial infection is feasible in practice:
malicious commit, dependency confusion, 
registry compromise, etc.

https://purl.org/trusting-docker/paper
https://purl.org/trusting-docker/paper
http://purl.org/trusting-docker/code


Artifacts

Conclusion
Research paper

18

purl.org/trusting-docker/paper

purl.org/trusting-docker/code

Thompson’s idea can be applied to CI systems

Your CI system can be malicious even if the 
source code is clean of malicious code

Self-reproduction allow long-term compromise

Initial infection is feasible in practice:
malicious commit, dependency confusion, 
registry compromise, etc.

Any question?

https://purl.org/trusting-docker/paper
https://purl.org/trusting-docker/paper
http://purl.org/trusting-docker/code

