
2023.5.25

Fuzzing the Latest NTFS in Linux 
with Papora: An Empirical Study
Edward Lo1*, Ningyu He2*, Yuejie Shi1, Jiajia Xu1, Chiachih Wu1, Ding Li2, and Yao Guo2 

1Amber Group 
2Peking University



File System
Key components of file systems

Operating system

File system

Image File operations

mount operate

interact



NTFS
New Technology File System

• A proprietary journaling file system developed by Microsoft


• Default file system of the Windows NT family starting NT 3.1


• NTFS3 was firstly upstreamed to Linux kernel in late 2021


• A new file system is complicated enough to have some bugs


• Existing fuzzers cannot efficiently fuzz a new file system



Challenges
Challenges to fuzz a file system

• Images are large 

• Only metadata matters


• Mutation on user data is basically a waste of 
time


• Each file system has their own metadata 
structure design 

• Need to develop a specific parser for the file 
system


• Checksums 

• Corrupted after mutation, which could lead to 
mount fails

• What to generate 

• Syscalls for file operations  


• How to mutate 

• The fuzzer should know how to mutate 
each arguments of the syscalls


• A valid fd, combination of flags, an 
allocated buffer…


• Context awareness 

• The context should be maintained across 
each syscalls

Fuzzing image Fuzzing file operation

int fd = open(“papora.seed”, …); 

read(fd, buf, 256); 

close(fd);



Proper Weapon
Please choose your weapon

Operating system

File system

Image File operations

mount operate

interact

AFL

Hongg 
Fuzz

Syzkaller

Trinity

?

Real 
machine VM



Published on S&P’19

• In 2019, Georgia tech SSLab proposed Janus 
- a coverage-driven fuzzer that efficiently and 
effectively test images and file operations in a 
joint manner


• However, we can’t use it for our target file 
system (NTFS)


• Need a specific image parser for NTFS 
(more about it later)


• The library (Linux kernel library) used by 
executor is obsolete (v5.3) and inactive at 
the surveying time


• KASAN patch integration and modification 
for the evolving new kernel

Janus

The structure and workflow of Janus



NTFS Sanity Check
Lots of sanity check on metadata

OEM ID must equal “NTFS    “ (4 spaces)

Sector size >= 512 and must be a power 
of 2

Cluster size must be a power of 2



Papora Image Parser
The workflow of the Papora’s image parser

Metadata

User data
Image 
Parser

Mutator

Metadata

User data
LibOS-based 

Executor

Original image Mutated image

Metadata Metadata

Extract Assemble



Papora Syscall Fuzzer
The workflow of the Papora’s syscall fuzzer

Seed 
program

Syscall 
fuzzer

LibOS-based 
Executor

Variables

Syscalls

Serialized program

File objects

Option I: 
Mutate

Option II: 
Generate

Deserialize

Variables

Syscalls

Mutated 
Serialized program

File objects



Executor
Choose an executor: which one?

Real machine VM

Speed Fast Slow

Scalability Spend money Spawn more VMs

Management 
(reboot / debug / etc) Hard Easy

Aging OS issue No Yes



Executor
Choose an executor: LibOS!

• Fast execution (~device)


• Easy management (reboot / 
debug / etc)


• Easy to scale


• Easy to reproduce (non-aging 
kernel)

Pros Cons

• Since LKL is an arch of Linux, 
there are some limitations of 
current implementation, e.g., !
MMU / !SMP / etc


• Kernel upgrading effort



Executor
Choose an executor: LibOS!

Cons

• Since LKL is an arch of Linux, 
there are some limitations of 
current implementation, e.g., !
MMU / !SMP / etc


• Kernel upgrading effort

Add KASAN support

Upgrade it!



Syzcaller vs. Papora

• Run Syzkaller for 1 month with the 
customized syz-lang description


• Run Syzkaller for 1 month with the 
customized syz-lang description


• No interesting outcome 🥲


• Run Papora for 3 months intermittently


• Upgrade LKL whenever new kernel is 
available (v5.15 -> v6.0)


• Identified 12 issues: 3 vulnerabilities 
(assigned CVEs), 9 bugs

Evaluation

All identified bugs.

Type I: crashed once the image is mounted


Type II: crashed once the program is executed



Takeaways
Some sound bytes

• Complicated and hard-to-fuzz software are good targets for security 
researchers


• File system maintainers should pay more attention on metadata integrity, and 
users should be cautious on mounting an disk image


• We have open-sourced both Papora and the upgraded LibOS with KASAN 
integrated at: https://github.com/ambergroup-labs/papora

https://github.com/ambergroup-labs/papora


Q&A
Contact us: chiachih.wu@ambergroup.io / ningyu.he@pku.edu.cn

mailto:chiachih.wu@ambergroup.io
mailto:ningyu.he@pku.edu.cn

