ASanity: On Bug Shadowing by Early ASan Exits

Vincent Ulitzsch

Deniz Scholz
Dominik Maier

--.-
Sl
o '] '
curlt

Berlin IN TELECUMMUNICAT[DNS

mailto:vincent@sect.tu-berlin.de
mailto:deniz.scholz@t-online.de
mailto:dmaier@sect.tu-berlin.de

Summary

Fuzzers add compile-time instrumentation sanitizers to enhance their bug capabilities.

AddressSanitizer identifies illegitimate memory accesses, but aborts program execution after the
first bug.

ASan’s early exits can hide bugs, as we show through a large-scale study.

Fuzz-testing relies on detecting crashing test cases

e P Mutate + run testcase °

Observe behaviour < Program

? Sanitizers help

| with detecting

Target

bug-triggerin
New Interesting . 5 Igg 5
coverage cases Inputs’
\/_

Fuzzing engine observes
behavior and saves Add inputs that yield new

interesting testcases, e.g., coverage to input queue
crashing inputs

Fuzzing engine takes some
program input, mutates it,
runs it against the target

Seed the fuzzing engine with
valid program input

AddressSanitizer helps to analyze crashes

Vulnerable Program

void swap(char *1left, char *right, int
len) {

//Call with len=size(right)

char tmp[len];

// Potential OOB read if

len>size(left)
memcpy (tmp, left, len);
[...]

}

A

A

AddressSanitizer output gives information about
the cause of the bug

==3955==ERROR: AddressSanitizer:

heap-buffer-overflow on address
OXx6100000001f5 at pc Ox5558ca920c3e bp
Ox7ffd85b1b390 sp Ox7ffd85blab4e
READ of size at Ox6100000001f5 thread
TO

#0 Ox5558ca920c3d in
__interceptor_memcpy.part.o

#1 Ox5558ca966533 in swap

#2 Ox5558ca96082a in libc start main

Gives information about crash-type, access type and

[ASan adds instrumentation during compile time to detect memory corruption errors during runtime.

of the violation. }

ASan’s early exit behavior can hide bugs

Vulnerable Program

ASan aborts program

{

void swap(char *left, char *right, int len)

char tmp[len];

// Potential OOB read

memcpy (tmp, left, len);

// O0OB write shadowed by early exit
memcpy (left, right, len);
memcpy(right, tmp, len);

A 4

»

execution here

And thus misses a more
. severe bug here

= This can hide bugs later in the program flow.

= ASan — by default — aborts program execution early (on the first bug).

= But: This behavior can be disabled via a compiler flag.

ASan’s early exits could lead to wrong bug prioritization

* ASan‘s output is used to assign severities, and thus, priorities in large-scale fuzzing campaigns.

* An underestimated severity can lead to lower priority.

 Or worse: Once the out-of-bounds read is fixed, the testcase might not trigger the out-of-bounds write
anymore — the bug will be missed!

Research Question

0 Do ASan early exits impact our bug-finding capabilities in practice?

Large Scale Study: Based On OSS-Fuzz

Clusterfuzz

0SS-Fuzz Pull project + fuzz O
L) © O

Submit project + harness to OSS-Fuzz repository #
®
_=-|-1

P °

Report bug + testcase to developer Monorail Issue Tracker
Developer

OSS-Fuzz: Framework for continuously fuzzing open-source projects in ClusterFuzz, distributed fuzzing
environment.

Focus on heap buffer overflow out-of-bounds Read (OOB-R) issues:

 RQ: Do the testcases also trigger an OOB-Write or use-after-free?

Monorail gives us detailed information about a bug

oss-fuzz oss-fuzz =

¥ Starred by 1 user

Owner: —-es

CC: a...([@adalogics.com
vshym...@gmail.com

Status: Verified (Closed)

Components: -

Modified: Apr 15, 2021

Type: Bug-Security

ClusterFuzz
Stability-Memory-AddressSanitizer
Reproducible

ClusterFuzz-Verified
Engine-libfuzzer

OS-Linux
Security_Severity-Medium
Projwasm3

Reported-2021-04-14
Disclosure-2021-07-13

Open issues * Q Search oss-fuzz issues...

Issue 33237: wasma:fuzzer: Heap-buffer-overflow in m3_LoadModule
Reported by ClusterFuzz-External on Wed, Apr 14, 2021, 1:54 AM PDT

Detailed Report: https:/foss-fuzz_com/testcase?key=6745255706755072

Project: wasm3

Fuzzing Engine: libFuzzer

Fuzz Target: fuzzer

Job Type: libfuzzer_asan_wasm3
Flatform Id: linux

Crash Type: Heap-buffer-overflow READ {7} Monorail

Crash Address: 0x6070000000db .

Crash State: output gives
m3_LoadModule crash type
fuzzerc

Sanitizer: address (ASAN)

Recommended Security Severity: Medium And assign severities

Crash Rewvision: hitps://oss-fuzz.com/revisions?job=libfuzzer_asan_wasm3&revision=202104140601

Heproducer Testcase: https:/foss-fuzz com/download™estcase 1d=6745255706755072

Experiment Design

Scrape Monorail
bugtracker issues

Filter for heap
OOB-reads

Recompile
harness, early
exists disabled

Re-execute
triggering input

Collect results

= Received data
for 44k issues,
spanning
around ~500
projects

= Based on
scraper by Ding.
et. al. in 2021

= 1986 OOB-read
issues, 1788
reproducible

Could recompile
814 examples,
spanning 159
projects

= 5% of the issues
trigger a more
severe bug!

10

Resulting Data

* For 23/159 projects: At least one testcase also triggers a use-after-
free or heap OOB-W

e 19/159 projects: At least one testcase additionally triggered
an OOB-W

« 8/159 projects: At least one testcase additionally triggered a
use-after-free

* Intotal almost 5% (38/814) heap OOB-R issues also triggered an
OOB-W or use-after-free

e Detailed listing also in the paper

Projects

OOB Reads

O0B Writes

Use-Afier-Frees

libdwarf
libsass
ghostscnpt
botan
wasm3
leptonica
mruby
mnchi
ffmpeg
openh26d
net-snmp
tdengine
muparser
davld
libreoffice
libhtp
openjpeg
grok
suricata
ndpi

php
libredwg
libheif

[Lh —
e = R == S R P = R I = R o =T L R e el e B =)

R

L = Pl o i Pl = i = = L) P = P o D = = = = = = —

S oO=lN=0o0==00000==2=00000

11

Case Study: Two bugs in the wasm3 interpreter (1/2)

M3Result InitDataSegments

{

}

M3Result ParseSection Data

}

(M3Memory * io _memory, IM3Module io module)

[...]
i64 segmentOffset;

//Read segmentOffset from wasm file
if ((size _t)(segmentOffset) + segment->size <= io_memory->mallocated->length)

u8 * dest = m3MemData (io_memory->mallocated) + segmentOffset;
memcpy (dest, segment->data, segment->size); //00B-R here

(M3Module * io _module, [...]) {
[...]
//Segment size is attacker controlled

segment->data += segment->size;
//Fix: _throwif("", segment->data > segment _end);

[...]

We conducted case study on the wasm3 interpreter — issue reported as a heap-buffer OOB-R

Fix will abort execution in case of OOB-R

12

Case Study: Two bugs in the wasm3 interpreter (2/2)

M3Result InitDataSegments (M3Memory * io memory, IM3Module io module) Integer overflow
{ allows us to write
[...] into the dest pointer

i64 segmentOffset;

//Read segmentOffset from wasm file

if ((size_t)(segmentOffset) + segment->size <= io_memory->mallocated->length)
u8 * dest = m3MemData (io_memory->mallocated) + segmentOffset;
memcpy (dest, segment->data, segment->size); //00B-R and OOB-W here

The OOB-W is
shadowed by the
OOB-R in the same
line.

= The OOB-R shadowed an OOB-W in the InitDataSegments section

= When fixed, our testcase will not trigger the OOB-W anymore: Bug could
remain hidden!

= Paper: We show how to exploit the OOB-W for code execution

13

Conclusion

ASan’s early-exits indeed shadow more severe bugs.

5% of OSS-fuzz testcases also triggered more severe bug.

Further fuzzing campaigns should consider disabling ASan’s early-exits.

https://github.com/fgsect/asanity

<HH =

Thank you for your attention!

vincent@sect.tu-berlin.de

14

