
ROPFUSCATOR: ROBUST OBFUSCATION WITH ROP

Giulio De Pasquale1 Fukutomo Nakanishi2 Daniele Ferla3 Lorenzo Cavallaro4

1King’s College London
2Toshiba Corporation
3Università di Bologna
4University College London



OBFUSCATION 101



DEFINITION

to obfuscate

verb

• make obscure, unclear, or unintelligible
• to make something less clear and harder to understand, especially intentionally

2



APPLICATIONS AND TOOLS

Obfuscation can be
applied at different stages

of the software
development process,
targeting source code or

compiled binaries

3



APPLICATIONS AND TOOLS

Obfuscation can be
applied at different stages

of the software
development process,
targeting source code or

compiled binaries

Obfuscators
• Tigress
• VMProtect
• Loki
• MOVfuscator

3



APPLICATIONS AND TOOLS

Obfuscation can be
applied at different stages

of the software
development process,
targeting source code or

compiled binaries

Obfuscators
• Tigress
• VMProtect
• Loki
• MOVfuscator

Use Cases
• Digital Rights Management (DRM)
• Software Licensing
• Intellectual Property Protection
• Anti-Tampering

3



OBFUSCATION TECHNIQUES

Some of the most common
obfuscation techniques include:

• Dead code insertion
• Control flow flattening
• Code transposition
• Virtualization
• Mixed-Boolean Arithmetics
(MBA)

Figure 1: Control flow flattening 1

1From Obfuscating C++ Programs via Control Flow Flattening, Laszlo and Kiss, SPLST 2007

4



INTRODUCING ROPFUSCATOR



RETURN ORIENTED PROGRAMMING

Return oriented programming (ROP) is a binary exploitation technique which reuses
existing code in programs to execute arbitrary algorithms

Code written using ROP is called ROP chain and it is composed of gadgets, a sequence of
instructions followed by a final return instruction

5



ANATOMY OF A ROP CHAIN

When ROP is used to exploit a program, the ROP chains are usually injected through a
buffer overflow vulnerability to control the instruction pointer

stack

local vars
buf
…

return addr
arg1
arg2

stack with ROP chain

local vars
AAAAAAAA
AAAAAAAA
0x40123
0x40456
1234
…

code memory

0x40123

0x40456

xchg eax,ecx
ret

pop ecx
ret

Figure 2: ROP chain execution on the stack

6



WHY ROP?

ROP is inherently harder to analyze than sequential code as it is threaded code 1 making
it a great candidate for CFG disruption.

Hence the question:

Can ROP be repurposed as a defensive technique?

1Bell, Communications of the ACM, 1973

7



ROPFUSCATOR

ROPfuscator2, a fine-grained obfuscation framework for C/C++ programs using ROP

2https://github.com/ropfuscator/ropfuscator

8

https://github.com/ropfuscator/ropfuscator


ARCHITECTURAL OVERVIEW

Figure 3: An architectural view of ROPfuscator

9



ARCHITECTURAL OVERVIEW

Figure 3: An architectural view of ROPfuscator

9



ARCHITECTURAL OVERVIEW

Figure 3: An architectural view of ROPfuscator

9



ARCHITECTURAL OVERVIEW

Figure 3: An architectural view of ROPfuscator

9



OPAQUE PREDICATES

An opaque predicate is a conditional statement that always evaluates to a specific value
and deliberately designed to be difficult to analyze

pow(x, 2) > 0 ?

Basic Block 1

Basic Block 2 Basic Block 3

x

Basic Block 1

Basic Block 2

These predicates are frequently constructed using NP-Hard problems to ensure the
intractability of their analysis

10



INSTRUCTION HIDING

Instruction Hiding decomposes one or more instructions into smaller parts, rearranging
them non-sequentially across neighboring locations

Original code Hidden code inserted Dummy code inserted

mov edx,
0xda598211
mul edx
(Insertion Point)
cmp eax,
0x40527619
setne al
cmp edx,
0xde447238
setne dl

mov edx,
0xda598211
mul edx
mov ecx, 123
cmp eax,
0x40527619
setne al
cmp edx,
0xde447238
setne dl

mov edx,
0xda598211
mul edx
add [esp], 456
cmp eax,
0x40527619
setne al
cmp edx,
0xde447238
setne dl

By applying this technique only to instructions that do not impact the calculation’s
outcome, instruction hiding makes it more difficult for attackers to understand the

program’s functionality and control flow

11



EXPERIMENTAL RESULTS



THREAT MODEL

We considered four different adversarial scenarios of
increasing difficulties and realism:

• Threat A: ROP-agnostic Static Analysis
• Threat B: Static ROP Chain Analysis
• Threat C: Dynamic Symbolic Execution (DSE)
• Threat D: Dynamic ROP Chain Analysis

12



RESEARCH QUESTIONS

• RQ1: Completeness. What is the highest code coverage
that ROPfuscator can attain?

• RQ2: Performance. To what extent ROPfuscator affects
performance?

• RQ3: Correctness. Are the semantics of the program
preserved?

• RQ4: Robustness. How does ROPfuscator’s robustness
stand in regards to the threat model attacks?

• RQ5: Practicality. Is our approach applicable to real-world
use cases?

13



OBFUSCATION CONFIGURATIONS

The configurations are composed as follows:

• Baseline, non obfuscated binaries
• ROPonly, ROP transformation only
• ROP+OPBasic, ROP transformation with basic opaque predicates
• ROP+OPDSE, ROP transformation with DSE-resistant opaque predicates
• ROP+OPDSE+Hiding, ROP transformation with opaque predicates and instruction
hiding

14



EVALUATION TEST CASES

We applied ROPfuscator to different applications and
test sets:

• GNU binutils
• SPEC CPU 2016 benchmark suite
• VLC media player

15



RQ1: COMPLETENESS

libc version Status readelf c++filt

2.27-3 Obfuscated 77.24% 74.99%
ubuntu1 Unobfuscated (No gadget / reg) 11.80% 11.70%

Unobfuscated (Other) 10.96% 13.31%

2.27-3 Obfuscated 36.02% 26.07%
ubuntu1.2 Unobfuscated (No gadget / reg) 53.02% 60.62%

Unobfuscated (Other) 10.96% 13.31%

2.31-0 Obfuscated 82.69% 80.93%
ubuntu9 Unobfuscated (No gadget / reg) 6.35% 5.77%

Unobfuscated (Other) 10.96% 13.31%

Figure 4: Ratio of instructions obfuscated in GNU binutils
with different library versions

On average, ROPFuscator
transforms about 60–80% of the
instructions into ROP chains

Compiler optimizations influence
the coverage, and, when not
applied, result in better higher
coverage

The same applies to the library
version from which the ROP
gadgets are extracted

16



RQ2-3: PERFORMANCE AND CORRECTNESS

absolute value ratio (Baseline=1) ratio (Roponly=1)

metric obfuscation readelf c++filt readelf c++filt readelf c++filt

time Baseline 0.39s 0.30s 1.0 1.0 0.09 0.01
ROPonly 4.23s 30.6s 11.0 102 1.0 1.0
ROP+OPBasic 41.1s 337s 107 1118 9.7 11.0
ROP+OPDSE 66.4s 761s 172 2527 15.7 24.8
ROP+OPDSE+Hiding 57.1s 611s 148 2030 13.5 19.9

size Baseline 1.1MB 1.1MB 1.0 1.0 0.10 0.07
ROPonly 10.5MB 15.7MB 9.6 14.1 1.0 1.0
ROP+OPBasic 895MB 1407MB 828 1269 86.6 89.7
ROP+OPDSE 1530MB 2411MB 1417 2175 148 154
ROP+OPDSE+Hiding 1283MB 2063MB 1188 1861 124 132

Figure 5: Runtime slowdown and code size of obfuscated programs for binutils for each
obfuscation algorithm

17



RQ4: ROBUSTNESS

Obfuscation Algorithm Robustness against Attack Algorithm Performance

A) Static Analysis B) Static ROP Analysis C) DSE D) Dynamic ROP Analysis Slowdown ratio Size ratio

Baseline 1 1
ROPonly 10–200 10-16
ROP+OPBasic 100–2000 900–1500
ROP+OPDSE 200–4000 1500–2500
ROP+OPDSE+Hiding 150–3000 1200–2000

Figure 6: Robustness and performance of each algorithm in ROPfuscator against attacks

: Breakable, : Robust, : Mostly Robust

ROPonly is robust against Threat A but not against Threat B, C, and D

Introducing opaque predicates (ROP+OPDSE) fortifies the programs against Threats B and
C

Instruction hiding (ROP+OPDSE+Hiding) makes the obfuscated binaries resistant against
Threat D 18



RQ5: PRACTICALITY

To balance robustness and performance, we considered obfuscating functions selectively:
the Balanced configuration

Config Time CPU Played Size
[s] Usage Smoothly? [MB]

Baseline 30.2 12.4% Yes 0.034
ROPonly 30.2 23.3% Yes 0.38
ROP+OPDSE 110.2 97.0% No 48.5
ROP+OPDSE+Hiding 120.7 95.3% No 41.3
Balanced 30.2 23.2% Yes 18.4

Figure 7: Performance statistics of VLC Media Player using libdvdcss

Using Balanced, title key derivation functions are obfuscated with ROP+OPDSE+Hiding
and the rest of the library with ROPonly

19



TAKEAWAY

The spatial and time overhead introduced by ROPfuscator are significant

However, it is possible to achieve robustness for an acceptable performance loss when
selecting sensitive functions to be strongly protected

20



FUTURE DIRECTIONS AND DEVELOPMENTS

Implemented Changes
• Build process and experiments
reproducibility with Nix3

• Independence from the system’s libc
with librop4

Future directions
• Move from microgadgets to a gadget
extraction engine

• Extended architectures support
(x86_64, ARM, ...)

3https://nixos.org
4https://github.com/ropfuscator/librop

21

https://nixos.org
https://github.com/ropfuscator/librop


CONCLUSION

We present ROPfuscator5, a C/C++ obfuscation framework with a unified threat model. We
address code coverage, overhead, correctness, robustness, and practicality challenges
through principled reasoning

Come meet us at the Demo session!

5https://github.com/ropfuscator/ropfuscator

22

https://github.com/ropfuscator/ropfuscator

	Obfuscation 101
	Introducing ROPfuscator
	Experimental Results

