@ FUZZING/I0

Fuzzing:
The Age of
Vulnerability
Discovery

Richard Johnson
Fuzzing 1O

Workshop on Offensive
Technologies 2023

@ FUZZING/I0

Agenda AW
Introduction | i
The Age of Vulnherability Discovery .

~

;;\\

L_ e 3
— R > o vm“%‘ %'w

l ¢ | U IO Al \ uaq
Improved Input Generation i e

Advanced Instrumentation

1119? bq‘iyﬁﬂ)1“ ‘5‘

\ . . f 0 H J? 19300 ‘
W, Plalen st oo .‘13."‘ T AWK |

. = :\ 14181) B
Reaching New Attack Surface 165 I;it.’w "W

w"”‘
Conclusions |

@ FUZZING/I0

Rlchard Johnson

Owne . mUZZINc

Advanced Fuzzing and Crash Analysis Training
Contract fuzzing harness and security tool development

Contact

rjiohnson@fuzzing.io
@richinseattle

& ,

Introduction

* In 2020, | discussed fuzzing in "Lightning in a Bottle'
reviewing major milestones that led to “The Fuzzing
Renaissance’ that was kicked off by the creation of
effective greybox mutational parser fuzzing with the
release of American Fuzzy Lop.

Introduction

« The Renaissance was a historic period of cultural,
artistic, political and economic “rebirth” hat attempted
to surpass ideas and achievements of antiquity. In
many ways this is a great metaphor for the rebirth of

interest and expanded capabilities of fuzzing starting
in 2013.

Introduction

« Today I'd like to reflect on this impact and show how
we, as a community at the intersection of academic
and professional research, have participated in this
so-called Renaissance which has now led to a new
age - The Age of Vulnerability Discovery.

Remembering How e Got Here

AMERICAN FUZZY LOP - ZALEWSKI, 2013

american fuzzy lop 2.52b (dump-prog)

» Edge transitions are encoded as

tuple and tracked in global map 0 daye, O re, 0 min, 48 sec 634
none seen yet 0
none seen yet 0
* Includes coverage and frequency 15 (2.37%) 0.30% / 3.33%
0 (0.00%) 4.55 bits/tuple
i . i) bitflip 2/1 227 (35.80%)

« Simplified genetic algorithm for EBLEIID (63,55 236 (48.35%)
continual improvement of input coy yietos L ot geonec
generation 21211k, 0721 8k, 0/21.5% 221

0/1081, 0/4491, 0/8749 3
0/0, 0/0, 0/428 n/a

® 0.00%/1287, 83.88% .

Uses dictionaries and traditional o0/ 1267, —

mutation fuzzing strategies

The Age of -
Vulnerability
Discovery

As of February 2023,
ClusterFuzz has
found ~27,000 bugs
In Google and over
8,900 vulnerabilities
and 28,000 bugs
across 850 projects
Integrated with OSS-

Fuzz.
- ClusterFuzz README

“Evaluating Fuzz Testing”

GEORGE KLEES, ANDREW RUEF, BENJI COOPER, SHIYI WEI, MICHAEL HICKS - 2018

» "We surveyed the recent research literature and assessed the experimental
evaluations carried out by 32 fuzzing papers. We found problems in every
evaluation we considered. We then performed our own extensive
experimental evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations can
indeed translate to actual wrong or misleading assessments.’

10

“Evaluating Fuzz Testing”

GEORGE KLEES, ANDREW RUEF, BENJI COOPER, SHIYI WEI, MICHAEL HICKS - 2018

« Until 2018, paper evaluations were ad-hoc and suffered from errors

« Most papers fail to perform multiple runs and used short timeouts

« Most papers counted crashes using noisy AFL measurements instead of bugs and coverage
« Most papers did not consider impact of initial seed selection

« Most papers vary the target set too widely and may have reported selective results

« COREUTILS / SPEC2000, SYNTHETIC TEST SUITES (CGC), LAVA

11

“Evaluating Fuzz Testing”

GEORGE KLEES, ANDREW RUEF, BENJI COOPER, SHIYI WEI, MICHAEL HICKS - 2018

 Evaluation conclusions

« multiple trials with statistical tests to distinguish distributions

a range of benchmark target programs with known bugs (e.g. LAVA-M, CGC, or old programs with bug fixes)

* measurement of performance in terms of known bugs, rather than heuristics based on AFL coverage profiles
or stack hashes

« block or edge coverage can be used as a secondary measure
 a consideration of various (well documented) seed choices including empty seed

« timeouts of at least 24 hours, or else justification for less, with performance plotted over time.

12

“Evaluating Fuzz Testing”

GEORGE KLEES, ANDREW RUEF, BENJI COOPER, SHIYI WEIL MICHAEL HICKS

Dolan-Gavitt, 2016

rmann, 2019
Yain$2071:8

Yues2020
= Zhao®2
Hazimeh; 2020 ' ‘

shme, 2017
Schumilo20j1i% Bshme, 201

Wanax2020 Blazytke,2019

Bohme, 2016

N N Stephens. 2016
Ascheriann. 2019 Stephens, 2016

Wang#2018 > “
N ~<Rawat,;20]7

e ’.

Gapg2020 —Lyu2015 12017
‘ Gant2018
72019 \4«
\\ -
S»Wang,:2017
Nagys2018

Yous2019 Chen¥2018
Pham#2018 ‘

She®20,18
Manés¥2018 Aschermaan, 2020

zevks
Mangs, 2018

74

@ FUZZING/I0

Benchmarking: Observable Success

FUZZBENCH . .
- _—_—nmm——
 FuzzBench is a free resource - \
for researchers to run N googlelfuzzbench
batches of fuzzing runs using F
Benchmarks

their work in a repeatable
and comparable framework
with other SOTA fuzzers

libxmi2-w2.9_2 (24hr, 20 trials/fuzzer)
3500 I

, 3000 l
7 2500 N
FuzzBench
i I Service
-E 1500
I-I‘ W00

S00

0

Report

14

Benchmarking: Observable Success

experiment summary

FUZZBENCH

By avg. score
average normalized score
fuzzer
aflplusplus
libafl
aflplusplusplus
honggfuzz
entropic
mopt
aflsmart 85.30
eclipser
afl
aflfast

libfuzzer

fairfuzz

centipede

By avg. rank
average rank
fuzzer
aflplusplusplus
aflplusplus
libafl
honggfuzz
entropic
eclipser
aflsmart
afl
mopt
libfuzzer
centipede
aflfast

fairfuzz

riment summary

@ FUZZING/I0

@ FUZZING/I0

Benchmarking: Observable Success

freetype?2_ftfuzzer summary

Ranking by median reached code Reached code coverage distribution
coverage freetype2_ftfuzzer (23h, at least 20 trials/fuzzer)

freetype2_ftfuzzer (23h, at least 20 trials/fuzzer)

Nim

25 Lgth 2
\5((\3 'ﬁ“i \“‘0 \Qe'é

Reached branch coverage

Reached branch coverage

Fuzzer (highest median coverage on the left)

Fuzzer (highest median coverage on the left)

@ FUZZING/I0

Benchmarking: Observable Success

FUZZBENCH - COVERAGE OVER TIME VIEW

Ly
o
m
s
L
=
=]
o
=
&t
f o
m
=
£
@O
-
L=
o

12000

WERAGE (LINEAR) CODE COVERAGE (LOG)

Mean code coverage growth over time

freetype2_ftfuzzer (23h, at least 20 trials/fuzzer)

L e ‘---"——'--——--r“"'-"'.l-"i—j—j-] b
oy AR

T
it
o A

e
..._|..."Q|ll.lll.-a-l-lQC""....
.

.."-.’...‘.'...r--i

e
Pt L -s
e T
-
-
e T
_.".'

1h:55m 3h:50m 5h:45m 7h:40m 9h:35m 11h:30m 13h:25m 15h:20m 17h:15m 19h:10m 21h:5m
Tirme (hour:minute)

* The error bands show the

onfidence interval around the mean co verage.

aflplusplusplus
aflplusplus
honggfuzz
libafl
entropic
eclipser
libfuzzer
mopt
aflsmart
afl

aflfast
fairfuzz
centipede

Benchmarking: Observable Success

FUZZBENCH - LOG TIME VIEW DIFFERENTIATOR FOR LONGER FUZZING CAMPAIGNS

CODE COVERAGE (LINEAR) CODE C RAGE (LOG)

Mean code coverage growth over time

freetype2_ftfuzzer (23h, at least 20 trials/fuzzer)

aflplusplusplus
aflplusplus
honggfuzz
libafl
entropic
eclipser
libfuzzer
mopt
aflsmart
afl
aflfast

G000 fairfuzz
centipede

U
o
m
e
L
=
=}
o
=
¥
f o
m
=
f=}
1}
-
o
[

1m am 14m 46m 2h:23m Th:24m
Time (hour:minute)

* The error bands show the onfidence interval around the mean coc rage.

Benchmarking: Observable Success

FUZZBENCH - COMPARING PERFORMANCE OF FUZZER VS PARSER

Ranking by median reached code Ranking by median reached code Ranking by median reached code
coverage coverage coverage

sqlite3_ossfuzz (23h, at least 20 trials/fuzzer) freetype2_ftfuzzer (23h, at least 20 trials/fuzzer) curl_curl_fuzzer_http (23h, at least 1 trials/fuzzer)

10000

8000

Reached branch coverage

o
o
o]
g
o
>
=]
L
=
i
=
2]
ey
£
=
L
=
[¥]
]
o
o

Reached branch coverage

T e e - s S -
GO eSS B O L G
) 2 W WYY el « - PR SR N
Wt et A N C
n‘.:'\‘ﬁ‘

Fuzzer (highest median coverage on the left) Fuzzer (highest median coverage on the left) Fuzzer (highest median coverage on the left)

19

Fuzz Introspector

LIKE GCOV REPORTS BUT FOR FUZZING! Project overview

* Fuzz introspector is a tool Project information

to he[p fuzzer developers Reachability overview

This is the overview of reachability by the existing fu.

to get an understanding of
their fuzzer's performance
and identify any potential
blockers

[
o | n te g ra te d \X/ I t h O S S — F l | E E un ions unreached Fuzzer depth Files reached Basic blocks reached Cyclomatic complexity
Isrchtslibftestfuzz/hts_open_fuzzer.c 003 026 67 6958 0850

17.0 &7 26998 10850 hts_open_fuzzer.c

FUZZING/I0

Fuzz Introspector

LIKE GCOV REPORTS BUT FOR FUZZING!

Project functions overview

ch:

Accumulated
cyclomatic
complexity

Function
Func name Functions filename reach
depth

MK !) 1 ['struc!

Undiscovered
complexity

Fuzzers | BB Cyclomatic Functions Reached by
hit count Count Count complexity reached functions

2,001 entri

Fuzz Introspector

LIKE GCOV REPORTS BUT FOR FUZZING! Call tree

* Fuzz Introspector is a tool to help ey

fu Zze r d eve [O pe rS to g et a n The following is the call tree with color coding for which functions are hit'not hit. This info is based on the co
understanding of their fuzzer's Y T

performance and identify any A ... DRI

ootential blockers Z:;ﬁ::‘h e

* Integrated with OSS-FUZZ

May 25, 2023 Workshop on Offensive Technologies 2023 22

Fuzzer Challenges

Testcases:
THE CRUCIBLE FOR FUZZING AND SOLVER TOOLS

® test-u8 - several chained 8 bits checks

* For those who are looking to ensure

® test-ulé - several chained 16 bits checks

theil’ new fuzzer iS ab[e tO SO[V@ ® test-u32 - several chained 32 bits checks
d”cﬂCUI.t Challeﬂges eﬂCOuntel’ed in ® test-ue4 - several chail?ed 64 bits.checks
) * test-ul28 - several chained 128 bits checks
the ﬂel-d, AFI—++ team has Created the ® test-u32-cmp - several chained 32 bit lesser/greater checks
Fuzzer Challenges prOJeCt ® text-extint - llvm _ExtInt() tests

® test-float - several chained float checks

e test-double - several chained double checks

® test-longdouble - several chained long double checks
® test-memcmp - several chained memcmp checks

® test-strcmp - several chained strncasecmp checks

® test-transform - different transforming string checks

® test-cre32 - several chained crc32 checks

May 25, 2023 Workshop on Offensive Technologies 2023 23

Fuzzer Challenges

THE CRUCIBLE FOR FUZZING AND SOLVER TOOLS TARGET can be (currently) one of:

* For those who are looking to ensure

o AFL++
their new fuzzer is able to solve e AFL++-gemu
difficult challenges encountered in o AFL++-frida

the field, AFL++ team has created the * lbAFL(WIP)
Fuzzer Challenges project * honggfuzz

e libfuzzer

e symsan (via test-symsan.sh , use it's docker container)

® symcc + gemu (via test-symcc.sh and test-symgemu.sh
e manticore (via test-manticore.sh)

e tritondse (via test-tritondse.sh)

e fuzzolic (via test-fuzzolic.sh + docker.io/ercoppa/fuzzc

May 25, 2023 Workshop on Offensive Technologies 2023 24

Bugs Exist in New Code

About half of the exploitable vulnerabilities 3 Abhishek Arya
found in Chrome in 2019 were found in o
code less than a year old

Replying to @richinseattle and @NedWilliamson

I.blackhat.com/eu-19/Wednesda... - 40% OSS-Fuzz
regressions in last 7 days.

40% Of OSS_FUZZ bug fiﬂdS WASIIS LIS 5:08 PM - Feb 24, 2020 - Twitter Web App
check-ins before code shipped to stable
\¥hy? Specifications rapidly change for the The best defense is a good offense, which

infrastructure that runs our businesses and in the case for code owners is integrating
code churn is high continuous fuzzing in the build chain

Building the Fuzz Chain

#include <openssl/ssl.h>
#include <openssl/err.h>
#include <assert.h>

FUZZING IN THE COMPILER #include <stdint.h>

#include <stddef.h>

» LibFuzzer is now part of St Library dnst();

SSL load error_strings();

Clang/LLVM and Visual Studio OpernssL. 20d a1 algorithms();

SSL_CTX *sctx;
assert (sctx = SSL CTX new(TLSvl method()));

* GO 1.18 has integrated libFuzzer

assert(SSL CTX use certificate file(sctx, "runtime/server.pem",
SSL_FILETYPE PEM));

* Rust has cargo-fuzz for integrated ResertSSL (T use PrivateKey Tle e triemee vy

return sctx;

: }

I_IbFuzzer harneSSGS Supports extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {

static SSL CTX *sctx = Init();
' ' SSL *server = SSL_new(sctx);

Structured fUZZIHQ USIHQ the BIO *sinbio = BIO new(BIO s mem());
BIO *soutbio = BIO new(BIO s mem());

W . " SSL_set bio(server, sinbio, soutbio);
SSL set accept state(server);

Arbltrary Crate BIO write(sinbio, Data, Size);
SSL do handshake(server);
SSL_free(server);
return 0;

26

Building the Fuzz Chain

FUZZING IN THE RUNTIME

« Jazzer - coverage guided fuzzing for JVM from Code Intelligence
* Wraps native LibFuzzer to fuzz Java, Kotlin, Scala, Clojure

« User creates a library with native implementation of
LLVMFuzzerTestOnelnput callback and calls Java methods via JNI

« Comes with special sanitizers for detecting injection bugs, user
controlled class deserialization, etc

27

Building the Fuzz Chain

import com.code intelligence.jazzer.api.FuzzedDataProvider;

import com.google.json.JsonSanitizer;

JAZZER FUZZING HARNESS

public class DenylistFuzzer {

o SuppOrt for Jazzer fuzz public static void fuzzerTestOneInput(FuzzedDataProvider data) {

String input = data.consumeRemainingAsString();

targets is now in OSS- S o
try {

F U ZZ a n d the J U n It output = JsonSanitizer.sanitize(input, 10);

} catch (ArrayIndexOutOfBoundsException e) {

teStlng frameWOrk // ArrayIndexOutOfBoundsException is expected if nesting depth is

exceeded.
return;
}
f/ See https://github.com/OWASP/json-sanitizer#output.
if (output.contains("</script”) || output.contains("<script™)

|| output.contains("<!--") || output.contains("]11>")) {

System.err.println("input : ™ + input);

System.err.println("output: + output);

throw new IllegalStateException("Output contains forbidden substring”);

28

@ FUZZING/I0

Building the Fuzz Chain

class PathTraversa
HookType.AFTER, targetClassName]
targetMethod '<init>", targetMethodDescriptor = "(Ljava/lang

public static void fileConstructorHook(MethodHandle method, Object thisObject, Object|[] arguments, int hookId, Object returnvalue
File file = (File) thisObject
String pathname = (String) arguments|©

o
o

try

catch(IOException e

Fuzzing in the Cloud

SECURITY IS A SHARED RESPONSIBILITY AND GOOGLE IS HERE TO HELP!

« OSS-FUZZ is an amazing resource. Hundreds of opensource
projects receive free fuzzing with libFuzzer and AFL++ engines (or
Jazzer, go fuzz, cargo fuzz, etc)

« Google is the top contributor to opensource fuzzing tooling and free
compute to perform fuzz testing in the cloud

» OSS-Fuzz also offers a bounty program for writing fuzzing harnesses
Including rewards for security bugs found by contributed harnesses

30

AFL++ - still the best general fuzzer

AFL++ - MARC HEUSE, HEIKO EISSFELDT, ANDREA FIORALDI, DOMINIK MAIER

' ' ' american fuzzy lop ++4.07a
> PerSIStent fUZZIﬂg, lleUZZ@F process timing overall results
@ days, @ hrs, 1 min, @ sec
1 ® days, © hrs, @ min, © 700
harness compat, iInmem testcases o e o e g 05
none seen yet (]
cycle progress map coverage
227.0 (32.4%) 0.97% / 10.98%
 LAF-Intel / CmpCov o (6.00%) 1,85 bits/tuple
stage progress findings in depth
havoc 421 (60.14%)
3450/12.8k (26.95%) 506 (72.29%)
« CmplLog / Redgueen 152k
2547 /sec @ (@ saved)
fuzzing strategy yields item geometry
}_1, P} 'f k), 'f . disabled (default, enable with -D) 7
® disabled (default, enable with -D) 674
Ig er per Ormance Inary UZZ|ng disabled (default, enable with -D) 402
disabled (default, enable with -D) 698

n/a e

* Nyx, QEMU, Unicorn, Frida, QDBI 522/119k, 174/20.8k 100. 66%

unused, unused, unused, unused
46.45%/4163, disabled

AFL++ - still the best general fuzzer

AFL++ - MARC HEUSE, HEIKO EISSFELDT, ANDREA FIORALDI, DOMINIK MAIER

® Pe rsistent fuzzi ng ’ U b Fuzzer Feature/Instrumentation afl-gcc llvm_mode gcc_plugin gemu_mode unicorn_mode

. NeverZero X x(1) (2) X X
harness compat, Inmem testcases H—_—_ B B—
LAF-Intel / CompCov X x86[_64]/arm[64] x86[_64]/arm
e LAF-Intel/ Cm pCOV cmpLog x x86[_64]/arm[64]
Whitelist X) (x)(3)
« Cmplog / Redqueen (96
InsTrim X

Ngram prev_loc coverage

« Higher performance binary fuzzing

Context coverage

Snapshot LKM support

* Nyx, QEMU, Unicorn, Frida, QDBI

LIbDAFL: Modular Fuzzer Design

LIBAFL - ANDREA FIORALDI, DOMINIK MATER, ET AL

LibAFL gives you many of the benefits of an off-the-shelf fuzzer, while being completely
customizable. Some highlight features currently include:

[]

fast : We do everything we can at compile time, keeping runtime overhead minimal.

Users reach 120k execs/sec in frida-mode on a phone (using all cores).

» scalable: Low Level Message Passing, LLMP for short, allows LibAFL to scale almost
linearly over cores, and via TCP to multiple machines.

» adaptable : You can replace each part of LibAFL. For example, BytesInput is just one
potential form input: feel free to add an AST-based input for structured fuzzing, and more.

» multi platform: LibAFL was confirmed to work on Windows, MacOS, Linux, and Android
on x86_64 and aarch64. LibarFL can be builtin no_std mode to inject LibAFL into
obscure targets like embedded devices and hypervisors.

* bring your own target : We support binary-only modes, like Frida-Mode, as well as

multiple compilation passes for sourced-based instrumentation. Of course it's easy to add

custom instrumentation backends.

33

LIBAFL - ANDREA FIORALDI, DOMINIK MATER, ET AL

corpus
events
executors
feedbacks

fuzzer
generators
inputs
monitors
mutators
ohservers
prelude
schedulers
stages

state

Corpuses contain the testcases, either in memory, on disk, or somewhere else.

Eventmanager manages all events that go to other instances of the fuzzer.

Executors take input, and run it in the target.

The feedbacks reduce observer state after each run to a single is_1interest-ing-value. If a testcase is interesting, it
may be added to a Corpus.

The Fuzzer is the main struct for a fuzz campaign.

Generators may generate bytes or, in general, data, for inputs.

Inputs are the actual contents sent to a target for each exeuction.

Keep stats, and display them to the user. Usually used in a broker, or main node, of some sort.

Mutators mutate input during fuzzing.

Observers give insights about runs of a target, such as coverage, timing, stack depth, and more.

The purpose of this module is to alleviate imports of many components by adding a glob import.

Schedule the access to the Corpus.

A Stage is a technique used during fuzzing, working on one crate: :corpus: :Corpus entry, and potentially altering
it or creating new entries. A well-known Stage, for example, is the mutational stage, running multiple
crate::mutators::Mutatorsagainsta crate: :corpus: :Testcase, potentially storing new ones, according to
crate::feedbacks: : Feedback. Other stages may enrich crate: :corpus: : Testcases with metadata.

The fuzzer, and state are the core pieces of every good fuzzer

LIDAFL: Modular Fuzzer Desi

n

LIbDAFL: Modular Fuzzer Design

LIBAFL - ANDREA FIORALDI, DOMINIK MATER, ET AL

» LIbAFL is a modular fuzzing system that provides mix and match
components for instrumentation, data generation, and runtime
configuration

« Many backends are supported - LLVM SanitizerCoverage, Frida,
QEMU user and system, Tinylnst, and more

* |n the near future, AFL++ will be a frontend for LIbAFL

« See paper from CCS22 "LiIbAFL: A Framework to Build Modular and
Reusable Fuzzers®

35

Advanced
Instrumentation

@ FUZZING/I0

v
s (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+va.
ocess_heartbeat /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/t1 lib.v.
.s_read bytes /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 pkt.c:1092:4

. 5513 get message /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 both.c:457:7
u Z Z e rS n e e to in ss13 get client hello /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 srvr.c:941:4
a1b in ss13 accept /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 srvr.c:357:9
,9901d in LLVMFuzzerTestOneInput /home/vulndev/fuzzer-test-suite/build/../openssl-1.0.1f/target.cc:34:3
«e6bf443 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/home/vulndev/heartbleed/op.
s71e6beb99 in fuzzer::Fuzzer::RunOne(unsigned char const*, unsigned long, bool, fuzzer::InputInfo*, bool, bool*)

(n OW W e n a ,/6371e6¢0389 in fuzzer::Fuzzer::MutateAndTestOne() (/home/vulndev/heartbleed/openssi-1.0.1f-fsanitize fuzzer+0x213389,

dx56371e6¢0f05 in fuzzer::Fuzzer::Loop(std::vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&) (/home/vulna
« 0x56371e6af042 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) (/home/vulndev/heartb.
42 0x56371e6d8d32 in main (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x22bd32) (BuildId: f795380dc529b46b3df17¢
a u lt h a S #13 0x7fb766213d8f in _libc start call main csu/../sysdeps/nptl/Libc start call main.h:58:16
#14 0x7fb766213e3f in _ libc start main csu/../csu/libc-start.c:392:3

#15 0x56371e6a3a84 in start (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x1f6a84) (BuildId: f795380dc529b46b3df17ct

o c c rred 629000009748 is located @ bytes to the right of 17736-byte region [0x6290600005200,0x629000009748)
i\located by thread TO here:
u u #0 0x56371e75babe in malloc (/home/vulndev/heartbleed/openssi-1.0.1f-fsanitize fuzzer+Ox2aeabe) (BuildId: f795380dc529b46b3df17¢01f¢

#1 0x56371e843alb in CRYPTO malloc /home/vulndev/fuzzer-test-suite/build/BUILD/crypto/men.c:308:8

I #2 0x56371e81543¢ in freelist extract /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 both.c:708:12

| #3 0x56371e81543¢ in ss13 setup read buffer /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 both.c:770:10
#4 0x56371e815a6¢ in ss13 setup buffers /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3 both.c:827:7
#5 0x56371e7dccbe in ss13 accept /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 srvr.c:292:9
#6 0x56371e79901d in LLVMFuzzerTestOneInput /home/vulndev/fuzzer-test-suite/build/../openssl-1.0.1f/target.cc:34:3

- #1 0x56371e6bf443 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/home/vulndev/heartbleed/openssl-1.0.1f-
c o rru l O n m a (es #8 0x56371e6c06a0 in fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&
#9 0x56371e6c0cf2 in fuzzer::Fuzzer::Loop(std::vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&) (/home/vulndev/hear

#10 0x56371e6af042 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) (/home/vulndev/heartblee’
11 0x56371e6d8d32 in main (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+6x22bd32) (BuildId: f795380dc529b46b3df17cF

- - -
th IS terl a l b u t '2 0x7fb766213d8f in _ libc start call main csu/../sysdeps/nptl/libc start call main.h:58:16

AddressSanitizer: heap-buffer-overflow (/home/vulndev/heartbleed/openssi-1.0.1f-fsanitize fuzzer+0x2adde6) (BuildId: f7
es around the buggy address:
9290: 00 060 00 00 00 00 00 00 00 00 00 00 00 00 00 00

“30: 00 00 60 060 60 00 60 00 00 60 00 00 00 00 00 00
"+ 00 00 00 00 60 060 00 06 60 66 06 60 060 60 00 00
"9 00 00 00 06 00 00 60 66 60 60 00 00 60 60 00

9 60 00 00 06 00 06 06 66 00 60 00 00 06 00

may require
specific checkers

37

@ FUZZING/I0

Sanitizers for Sanity

HEARTBLEED IMPACTED 66% OF WWW SERVERS

» Heartbleed taught us that fuzzers
and checkers work in harmony to
find deep bugs

« Today's best practices for fuzzing
Wwill Include at least one worker node
with sanitizers enabled.

« AddressSanitizer is only one of many

@ FUZZING/I0

Sanitizers for Sanity

ADDRESS SANITIZER LIFTED THE SHADOW

0x629000009748 thread TO

in _ asan memcpy (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x2adde6) (BuildId: f795380dc529b46b3df
in tlsl _process_heartbeat /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/t1 1ib.c:2586:3

in ss13_read_bytes /home/vulndev/fuzzer-test-suite/build/BUILD/ss1/s3_pkt.c:1092:4

ssl3 get message /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 both.c:457:7

READ of size 55043 at
#0 0x56371e75adeb
#1 0x56371e7a4d45
#2 0x56371e80f8f2
#3 0x56371e813d23

Use after free (dangling ptr deref)
Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope

Initialization order bugs

Memory leaks

#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15

0x56371e7e0lef

0x56371e7dcOlb

0x56371e79901d
0x56371e6bf443
0x56371e6beb99
0x56371e6c0389
0x56371e6cOf0O5
0x56371e6af042
0x56371e6d8d32
0x7fb766213d8f
0x7fb766213e3f
0x56371e6a3a84

in
in
in
in
in
in

0x629000009748 is located
allocated by thread T@ here:

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

0x56371e75babe

0x56371e843alb
0x56371e81543c i

0x56371e81543c
0x56371e815a6¢

0x56371e7dccbe i

0x56371e79901d
0x56371e6bT443
0x56371e6c06a0
0x56371e6cOcf2

in

in

ss1l3 get client hello /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 srvr.c:941:4

ss13 accept /home/vulndev/fuzzer-test-suite/build/BUILD/ss1l/s3 srvr.c:357:9

LLVMFuzzerTestOneInput /home/vulndev/fuzzer-test-suite/build/../openssl-1.0.1f/target.cc:34:3
fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/home/vulndev/heartbleed/openssl-1.0.1f-f
fuzzer::Fuzzer::RunOne(unsigned char const*, unsigned long, bool, fuzzer::InputInfo*, bool, bool*) (/home/vulnd
fuzzer::Fuzzer::MutateAndTestOne() (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x213389) (BuildId
fuzzer::Fuzzer::Loop(std::vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&) (/home/vulndev/heart
fuzzer::FuzzerDriver(int*, char*#*#*, int (*)(unsigned char const*, unsigned long)) (/home/vulndev/heartbleed/op
main (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x22bd32) (BuildId: f795380dc529b46b3df17c01f9d
_ libc_start_call_main csu/../sysdeps/nptl/libc_start_call_main.h:58:16

__libc start main csu/../csu/libc-start.c:392:3

_start (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x1f6a84) (BuildId: f795380dc529b46b3df17c0Olf

0 bytes to the right of 17736-byte region [0x629000005200,0x629000009748)

malloc (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x2aeabe) (BuildId: f795380dc529b46b3df17c01f9
CRYPTO malloc /home/vulndev/fuzzer-test-suite/build/BUILD/crypto/mem.c:308:8

freelist extract /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 both.c:708:12

ss13 setup read buffer /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 both.c:770:10

ssl3 setup buffers /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3 both.c:827:7

ss13_accept /home/vulndev/fuzzer-test-suite/build/BUILD/ssl/s3_srvr.c:292:9

LLVMFuzzerTestOneInput /home/vulndev/fuzzer-test-suite/build/../openssl-1.0.1f/target.cc:34:3
fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/home/vulndev/heartbleed/openssl-1.0.1f-f
fuzzer::Fuzzer: :ReadAndExecuteSeedCorpora(std: :vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&)
fuzzer::Fuzzer::Loop(std::vector<fuzzer::SizedFile, std::allocator<fuzzer::SizedFile> >&) (/home/vulndev/heartb

#10 0x56371e6af042 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) (/home/vulndev/heartbleed/op
#11 0x56371e6d8d32 in main (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x22bd32) (BuildId: f795380dc529b46b3df17c01f9d
#12 0x7fb766213d8f in libc start call main csu/../sysdeps/nptl/libc start call main.h:58:16

SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/vulndev/heartbleed/openssl-1.0.1f-fsanitize fuzzer+0x2adde6) (BuildId: f795380dc5

Shadow bytes around the

0x0c527fff9290:
0x0c527fff92a0:
0x0c527fff92b0:
0x0c527fff92c0:
0x0c527fff92d0:
=>0x0c527fff92e0:
0x0c527fffo2f0:
0x0c527Fff9300:
0x0c527fff9310:
0x0c527fff9320:
0x0c527Fff9330:

00
00
00
00
00
00

00 0
00 0
00 0
00 0
00 0
00 0

buggy
00

address:
00 06 00
00 00 00
00 00 00
00 06 00
00 00 00
00 00 00

0

0 00
0 00
0 00
0 00
0 00

00
00
00
00
00
00

00
00
00

00
00
00
00 00
00 00
e[-]

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

Sanitizers for Sanity

LLVM SANITIZER FAMILY UNDEFINED BEHAVIOR SANITIZER

e The LLLVM Sanitizer fami[y has » Array subscript out of bounds, where the bounds
: . can be statically determined
grown to include:

* Bitwise shifts that are out of bounds for their data
type

 Undefined Behavior Sanitizer

« Hardware-assisted Address Sanitizer
* Dereferencing misaligned or null pointers
 Thread Sanitizer (races and deadlocks) J J P

» Memory Sanitizer (uninitialized memory) * Signed integer overflow

« Conversion to, from, or between floating-point
types which would overflow the destinatio

40

Sanitizers for Sanity

LLVM SANITIZER FAMILY HARDWARE-ASSISTED ADDRESS SANITIZER

e The LLLVM Sanitizer fami[y has * ASAN uses bitmask for shadow memory and
: . redzone for overflows, and quarantines for UAF
grown to include:

. Undefined Behavior Sanitizer « HWASAN uses hardware memory tagging

- Hardware-assisted Address Sanitizer * AArch64 uses top-byte-ignore (TBI) pointer
tagging

 Thread Sanitizer (races and deadlocks)

. Memory Sanitizer (uninitialized memory) « X86_64 will use Linear Address Masking (LAM) or
page aliasing. Linear addresses use 48bit (L4) or
57bit (L5) addresses, leaving room for tagging.

» Some detections become probabilistic

41

Sanitizers for Sanity

LLVM SANITIZER FAMILY

« Sanitizers are now supported in:

° Clang 31+ GCC 48+ oS x86 x86_64 ARM ARM64 MIPS MIPS64 PowerPC PowerPC64
Linux yes yes yes yes yes yes

OS X yes yes

Visual Studio 2019+

iOS Simulator yes ves
FreeBSD yes yes

LibFuzzer, AFL++, honggfuzz |NE=—_—-

yes yes

Kernels: KASAN

Emulators: QEMU, Frida

42

Unconstrained Progress

WHEN YOU CAN'T BEAT THEM, UNJOIN THEM

« Code logic is structured as a series of constraints or comparisons
that decide which code path to follow

« For a long time, it was assumed constraint solvers were the solution

« Constraint solvers require heavy analysis including lifting target
code to intermediate languages to extract the semantics of each
Instruction. Solving requires converting the series of instructions to
Boolean algebra in a format compatible with SMTLIB2 or domain
specific encoding - computationally expensive for quick iteration

43

Unconstrained Progress

WHEN YOU CAN'T BEAT THEM, UNJOIN THEM

* LAF-Intel was the first fuzzing technology to approach the problem
of constraints through code transformation

» Multibyte comparisons are rewritten as a series of sequential
single-byte comparisons.

e 32bit: 1/(2732) -> 1/(278 * 4). 4,294,967,296 vs 1024

« CmpCov is the updated version of LAF-Intel seen in fuzzers today

44

Focused Mutation

CHEAP ALTERNATIVE TO TAINT TRACKING AND SYMBOLIC EXECUTION

« RedQueen was the first fuzzing technology to efficiently correlate
values observed in comparisons as being derived directly from the

iInput

» Solves magic bytes and checksums by spending time fuzzing
Input byte offsets seen in the comparison instructions without
needing taint tracking or symbolic execution

« CmpLlog is the updated implementation seen in fuzzing tools today

45

Improved Input *-
Generation

@ FUZZING/I0

44
Grammar

m uta to rS a re X.rule("START", "<document>{XML_CONTENT}</document>")
ctx. rule("XML_CONTENT", "{X1L}{XML_CONTENT}")

able to trigger

deep b ugs tha t ﬁé;:giift();ﬂi;;‘)ﬂ)lﬁ”,"ATTR‘,"XFvlL_CONTENT”], lambda tag,attr,body: b"<%s %s>%s</%s>"%
ctx.rule("ATTR", "foo=bar")

a re n ea r | ctx.rule("TAG", "some_tag")

Impossible to

find with code

cove ra g e H“‘ex("TAG“,“[a-z1+")

guided fuzzers”
vanHauser, Berlin 2022

@ FUZZING/I0

Grammars

CONTEXT FREE GRAMMARS STRUCTURED / APl GRAMMARS
« DEFENSICS « Peach (AFLSmart)
 Domato e libprotobuf-mutator

» Nautilus * Fuzzill

« Grammarlron » SyzlLang

 AFL++ ATNWalk » KernelFuzz

e Fzero / F1 Fuzzer

48

Searching for Approximate Grammar

FUZZING IS A CHEAP GRAMMAR EXTRACTION

* It has long been known that high quality grammars can accurately
model syntax and interaction logic to perform testing

 Grammars are tedious to produce, and implementations may deviate
from the specification

* The simplest improvement to bit flipping is to use a dictionary of tokens

* DICT2FILE is a LLVM plugin that ships with AFL++ that can extract
constant comparisons at compile time. Generating a dictionary can be
as simple as that!

49

Grammars are a Browser’s Best Friend

DOM FUZZING WITH DOMATO - IVAN FRATRIC / GOOGLE

« Afew simple components can compromise a browser..
« grammar.py - Generic BNF parser and generative fuzzer
« “ixt, ".html - HTML/CSS/js grammar and .html template

e generator.py - Test case generator for DOM fuzzing

50

Grammars are a Browser’s Best Friend

DOM FUZZING WITH DOMATO - IVAN FRATRIC / GOOGLE

Domato uses an eBNF inspired context-free grammar

$ python generator.py --output dir out --no_of files 3
Running on ClusterFuzz
Output directory: out

Number of samples: 3
Writing a sample to out\fuzz-0.html 08/30/2022 0©7:40 PM 455,255 fuzz-0.html

Writing a sample to out\fuzz-1.html 08/30/2022 0©7:40 PM 463,901 fuzz-1.html
Writing a sample to out\fuzz-2.html 08/30/2022 0©7:40 PM 460,684 fuzz-2.html

51

Grammars are a Browser’s Best Friend

DOM FUZZING WITH DOMATO - IVAN FRATRIC / GOOGLE

Domato uses an eBNF inspired context-free grammar

<cssproperty z-index> = <fuzzint>
<cssproperty z-index> = auto
<cssproperty z-index> = inherit

<cssproperty zoom> = <percentage>%

<cssproperty zoom> <fuzzint>
<cssproperty zoom> = <float>
<cssproperty_ zoom> = auto

<cssproperty zoom> = reset

Grammars are a Browser’s Best Friend

DOM FUZZING WITH DOMATO - IVAN FRATRIC / GOOGLE

To Inject lines of code Iinto the grammar, a special syntax is used

Ibegin lines
<new element> = document.getElementById("<string min=97 max=122>");
<element>.doSomething();

lend lines

This will expand types as well as generate new variable hames

Grammars are a Browser’s Best Friend

DOM FUZZING WITH DOMATO - IVAN FRATRIC / GOOGLE

To Inject lines of code into the generator, another syntax is used

Ibegin function createbody
n = int(context['size'])
ret_ val = 'a' * n

lend function

<body> = <call function=createbody>

Grammars are a Browser’s Best Friend

JAVASCRIPT JIT FUZZING - FUZZILI - SAMUEL GROB

* To fuzz the Chrome V8 JavaScript JIT, Samuel created a custom
iIntermediate language that represents dependencies and mutations

» Fuzzilli has found vulnerabilities in every JavaScript engine with a JIT

» The key to Fuzzilli is that | can lift JavaScript source from disk to IL and
iInstrument the AST prior to the JIT engine having access to the code

 JIT vulhs have been the primary attack vector on browsers for 5 years

* An Intermediate Language fuzzer is a form of grammar driven mutator

55

Grammars are a Browser’s Best Friend

LIBPROTOBUF-MUTATOR VS THE CHROME SANDBOX

 Ned Willlamson showed that APIs
can be encoded as ProtoBuf
definitions and found Chrome e
sandbox vulhs in "Attacking Chrome MessageA message._

”:)Cn (2019) } MessageB message_

required MessageC message_c = 3;

message MyFormat {
I

* LibProtoBufMutator allows users to
describe basic types and structures
and use metaprogramming for
fuzzing

56

Grammars for APIs

since we use getenv().

LIBPROTOBUF-MUTATOR VS APIS

oroto_file/my_format.proto.

» libprotobuf-mutator is generalizable | E T
to any type of AP fuzzing and is
integrated directly with LibFuzzer. |

otobu

DEFINE_PROTO_FUZZER(const my_fuzzer::MyFc my_proto_format) {

/ Convert ye § 3 r format your targeted code accepts

accept protobufs.
® OSS_ FUZZ haS examp[e ta rg ets std::string native_input convert_to_native_input(my_proto_format) ;

USing libprOtObUf_mutatOr tO [Y | / o easily re /e the native input for

debugging and for s

deserialize mutated buffers et e e

<< native_input << std::endl;

// Now test your targeted code using the converted protobuf input.

targeted_function(native_input) ;

57

Grammars for Syscalls

GRAMMAR FUZZING SYSCALLS

« System Calls are "just” a privileged API between userland and

the kernel —
Syscall Description Language (syzlang)

‘open(file ptr[in, filename]|,[flags flags[open_flags])[fd |

read(fd fd, buf ptr[out, array[int8]], count bytesize[buf])

close(fd fd

open_flags = O _RDONLY, O WRONLY, O _RDWR, O_APPEND

Xhen in Doubt, Math 1t Out

HIGHLY SELECTIVE APPLICATION OF HIGHLY SOPHISTICATED TECH WINS IN THE END

» FuzzBench and other empirical data has deflated the hype around
symbolic execution, taint analysis, and other complex analysis

* In a compute constrained environment, it's typically more efficient to use
naive high throughput approaches like fuzzing

» Selective use of graph analysis to locate “frontiers” that are guarded by
complex constraints can identify when to apply more complex approaches
to code exploration

May 25, 2023 Workshop on Offensive Technologies 2023 59

Xhen in Doubt, Math 1t Out

symcc / SYMQEMU

* SYMCC / SYMQEMU are SoTA define 132 tofowiclisz, a3z
implementations of concolic el e
execution that can work on large
code bases

ym_get_parameter_expression (i8 0)
ym_get_parameter_expression (i8 1)
ym_build_integer (i64 1)

call i8* (@_sy
ym_build_shift_left (i8* %4, i8* %5)

call i8* (@
call i8* @
call i8~* @

/m_build_equal (i8* %6, i8* %3)
vm_build bool to bits (i8* %7)

1
A

s
s
s
s
s
s

- ' ' . ; concrete computation (as before)
* Integration exists in AFL++ via 59 — shl nsw i32 31, 1
0 icmp eq i32 39, %0

custom mutators 211 - zext il 210 to 132

call void @_sym_set_return_expression (i8* %8)

* Less than 1% of edges require symex [

Xhen in Doubt, Math 1t Out

symcc / SYMQEMU

« SYMCC is based on an LLVM instrumentation and can be efficient for
source based targets

* However if source Is available then other compiler plugins can extract
grammars which will be more efficient than using constraint solving

« SymQemu is derivative of the SymCC implementation and works on
unmodified binaries and has been shown to be more robust than
alternatives

May 25, 2023 Workshop on Offensive Technologies 2023 61

Xhen in Doubt, Math 1t Out

SYMSAN TRITON-DSE
 Builds on top of the built in » High level API for Triton from
DataFlowSanitizer in LLVM Quarkslab uses a unique internal
graph representation that is highly

* Low runtime state management
overhead due to efficient storage of
high level types » Available as an extension to AFL++

but not proven to be more capable

than SymQEMU

effficent

» 2Xx faster than SymCC/SymQEMU

* Minimal memory overhead

May 25, 2023 Workshop on Offensive Technologies 2023 62

Xhen in Doubt, Math 1t Out

TRITON-DSE
o “TritonRSE goat S to DTOVid@ Loader mechanism (based on LIEF, cle or custom ones)
nigher-level primitives than Triton. JUIRITIENT B2 e E e

Triton is a low-level framework Coverage strategies (block, edge, path)

where one have to provide
manually all instructions to be
executed symbolically”

Pointer coverage

Automatic input injection on stdin, argv
Input replay with QBDI

input scheduling (customizable)
sanitizer mechanism

basic heap allocator

some libc symbolic stubs

May 25, 2023 Workshop on Offensive Technologies 2023 63

Reaching New %
Attack Surface

2019: 2046 Linux
kernel bugs found &
fixed by SyzKaller

(BlueHat IL 2020)

2023: 4535 fixed

Keeping average of
2-3/day

SyzBot Dashboard

https.//syzkallerappspot.com/upstream

2

FUZZING/I0

Fuzzing Windows

WINDOWS - THE ANTI-POSIX ENVIRONMENT

* Fuzzing on Windows has many architectural considerations

» No forking - Address Space Randomization causes inconsistencies across runs
« Multi-threaded by default

« Locked access to system resources

« An array of IPC options

» Async behavior via COM interfaces

« Handle based access to subsystems that need to be managed appropriately across iterations

66

Fuzzing Windows with DBI

MANY CODE COVERAGE ENGINES HAVE PROPAGATED TO WINDOWS

* The solution for fuzzing windows is either to embed fuzzing in the process
using a native JIT for x64->x64 or to use snapshot-oriented fuzzing based

on hypervisors or emulation

« Dynamic Binary Instrumentation achieves the first option

* DynamoRIO
* Frida
« Custom JIT via Debugger APIs like Tinylnst

67

Snapshot Fuzzing

A SNAPSHOT IN TIME UNLOCKS THE FUTURE POTENTIAL

« Snapshot fuzzing solves the problems with persistent in-memory
fuzzing faced by solutions like LibFuzzer, AFL++ Persistence, DBI based
fuzzing, stateful exploration, and many other challenges

* For the uninitiated, snapshot fuzzing restores state between iterations

« Each modified page after a checkpoint defined by the fuzzer or initial
state saved will be restored from the saved or initial state

* Solves all problems with global state management, process creation,
etc

68

Snapshot Fuzzing

A SNAPSHOT IN TIME UNLOCKS THE FUTURE POTENTIAL

« Snapshot fuzzing is not easy-mode and requires expert users

« Workflows are more challenging; initialization of the fuzzing loop is from
a runtime state requiring configuration of virtual or hypervisor CPU state

* Snapshots can be generated incrementally to reliably handle and target
state transitions

* Snapshots can be migrated to scalable environments

69

Fuzzing Anything With Emulators

EMULATE CODE YOU CAN ISOLATE FROM HARDWARE /0

« On the graph of performance vs targetability, emulators are the maximum
for targetability

» Given enough effort anything can be simulated (ref: "the simulation”)

* In reality, there is an ideal compromise between instrumentation of an “in
situ” execution environment and emulation

« Emulation can limit access to external devices, environmental config, etc

70

\WTF Fuzzer

SO YOU WANT TO FUZZ A WINDOWS KERNEL DRIVER

* Fuzzing closed source bare metal OS environments is challenging

* The options are to take full system memory snapshots, which will only
have the kernel and a single process mapped into memory or to develop
a custom hypervisor

« WTF implements the first approach - fuzzing a kernel via a kernel
memory snapshot

* My team expanded this to support any OS that runs in QEMU

71

\WTF Fuzzer

SO YOU WANT TO FUZZ A WINDOWS KERNEL DRIVER

* |In the "'simple” case, a kernel debugger attaches to the runtime state at
the point of the call you want to test

» Given the right amount of effort, you can hook any APl and respond
accordingly

* You can see this in the example multi-packet TLV sample

» Confirmed this in eBPF fuzzing we did last year — multi [OCTL

72

KAFL / NYX Fuzzer

YOU WANT KASAN AND SYZKALLER ON WINDOWS?

* Pure emulation based kernel fuzzing will find its limits quickly due to
device [/0

* The final boss for OS fuzzing Is writing a custom hypervisor that resets live
memory and execution state in an OS that still has access to virtualized
devices

« Using native hypervisor allows use of IntelPT for 5% full system coverage

» Achieved after a 4 year effort from RUB-SysSec in German

73

KAFL / NYX Fuzzer

YOU WANT KASAN AND SYZKALLER ON WINDOWS?

* KAFL is now forked by Intel and is state of the art for live OS fuzzing
* Nyx today is provided as an API

* Nyx Is integrated in AFL++ for fuzzing hypervisor guests!

74

@ FUZZING/I0

“GDB Fuzzing”

TRADING OFF PERFORMANCE TO GET THE JOB DONE

« Anything implementing a gdb stub can technically be fuzzed

« JTAG, embedded devices, simulators, hypervisors, etc

» Recently being explored by Andreas Zeller's group in the ISSTA23 paper
"Fuzzing Embedded Systems Using Debug Interfaces” (GDBFuzz)

« Avatar”2 for firmware that can't be fuzzed in isolation and needs to
emulate code while still accessing hardware |/0 on embedded devices

75

Differential Fuzzing

ASK AN ORACLE WHEN HARNESSING IS IMPOSSIBLE

« Differential Fuzzing is the answer when bugs can be found via a round trip
through an encoder/decoder

* Differential Fuzzing also allows comparing across implementations of a
parser. This is used by tools like SiliFuzz to fuzz CPUs or others to fuzz

smart contracts

76

Differential Fuzzing

ASK AN ORACLE WHEN HARNESSING IS IMPOSSIBLE

« Smart Contract Fuzzing

For inputs, there are three notable things we’ll want to vary:

e The config which determines how the VM should execute (what features and such)
e The BPF program to be executed, which we’ll generate like we do in “smart”

e The initial memory of the VMs
Once we’ve developed our inputs, we’ll also need to think of our outputs:

e The “return state”, the exit code itself or the error state
e The number of instructions executed (e.g., did the JIT program overrun?)

e The final memory of the VMs

77

Differential Fuzzing

ASK AN ORACLE WHEN HARNESSING IS IMPOSSIBLE

Then, to execute both JIT and the interpreter, we’ll take the following steps:

e The same steps as the first fuzzers:
e Use the rBPF verification pass (called “check”) to make sure that the VM will accept the input program

e [Initialise the memory, the syscalls, and the entrypoint

. Create the executable data

e Then prepare to perform the differential testing
e JIT compile the BPF code (if it fails, fail quietly)

e [Initialise the interpreted VM

e Initialise the JIT VM

e Execute both the interpreted and JIT VMs

e Compare return state, instructions executed, and final memory, and panic if any do not match.

78

NHI_ R e
,,,...L.......
WA |
‘ W | _.-,::.

’.*. “! ..l

) -

L M-
a0y

\
AL R DY N

-y '

,..,ﬁ..",.,

4:: ,3..‘ fagll| ¢

jroigie
N TRt _.__._.......
)’3 ‘..M ...w, -q~

) a ..u -
", ._., _, e
r. .‘5<F .

HIRE . e,

.8!'.1
‘?Otc Hy ..o

gz:

h»'.-‘

,D*_

v ¥ V!
:w:s

/ J
/
-
\
>t
Hito s
. .
s v
fof “
Y
" ;‘\ - -u L R o
\ IS y -
-
“ .
DN

_ 1diry B 12 \
,.35 .,t .r.,...mm. QT ..M. f \

VA o
@?s..itl»ﬁé;:?& F R :\

- ..: 'mw.ﬂ:&..
Ui A ! \
v o Wi LT
AT L TY YIRS
t‘.. I ¢ S
—

e... . e
g

/ a
ey ek [/

— -

" .v

ﬁ::
U R o
::: :

“

Summary

achieve new heights,

test anything,

we are only at the beginning of expanding the impact and

Fuzzing can go anywhere

reach of fuzzing. There is room in all three areas | focused on,
but we are continually growing capabilities and reach for

fuzzing

79

@ FUZZING/I0

Thank You, WOOT 23
Questions?

Richard Johnson | rjohnson@fuzzing.io | @richinseattle

/

Security Automation ¢ Vulnerability Research

https./ /fuzzing.io/ woot23.pdf

	Slide 1: Fuzzing: The Age of Vulnerability Discovery
	Slide 2: Agenda
	Slide 3
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Remembering How We Got Here
	Slide 8: The Age of VulnerabilityDiscovery
	Slide 9: As of February 2023, ClusterFuzz has found ~27,000 bugs in Google and over 8,900 vulnerabilities and 28,000 bugs across 850 projects integrated with OSS-Fuzz.
	Slide 10: “Evaluating Fuzz Testing”
	Slide 11: “Evaluating Fuzz Testing”
	Slide 12: “Evaluating Fuzz Testing”
	Slide 13: “Evaluating Fuzz Testing”
	Slide 14: Benchmarking: Observable Success
	Slide 15: Benchmarking: Observable Success
	Slide 16: Benchmarking: Observable Success
	Slide 17: Benchmarking: Observable Success
	Slide 18: Benchmarking: Observable Success
	Slide 19: Benchmarking: Observable Success
	Slide 20: Fuzz Introspector
	Slide 21: Fuzz Introspector
	Slide 22: Fuzz Introspector
	Slide 23: Fuzzer Challenges
	Slide 24: Fuzzer Challenges
	Slide 25: Bugs Exist in New Code
	Slide 26: Building the Fuzz Chain
	Slide 27: Building the Fuzz Chain
	Slide 28: Building the Fuzz Chain
	Slide 29: Building the Fuzz Chain
	Slide 30: Fuzzing in the Cloud
	Slide 31: AFL++ - still the best general fuzzer
	Slide 32: AFL++ - still the best general fuzzer
	Slide 33: LibAFL: Modular Fuzzer Design
	Slide 34: LibAFL: Modular Fuzzer Design
	Slide 35: LibAFL: Modular Fuzzer Design
	Slide 36: Advanced Instrumentation
	Slide 37: Fuzzers need to know when a fault has occurred. Memory corruption makes this trivial but other bug classes may require specific checkers
	Slide 38: Sanitizers for Sanity
	Slide 39: Sanitizers for Sanity
	Slide 40: Sanitizers for Sanity
	Slide 41: Sanitizers for Sanity
	Slide 42: Sanitizers for Sanity
	Slide 43: Unconstrained Progress
	Slide 44: Unconstrained Progress
	Slide 45: Focused Mutation
	Slide 46: Improved Input Generation
	Slide 47: “Grammar mutators are able to trigger deep bugs that are near impossible to find with code coverage guided fuzzers"
	Slide 48: Grammars
	Slide 49: Searching for Approximate Grammar
	Slide 50: Grammars are a Browser’s Best Friend
	Slide 51: Grammars are a Browser’s Best Friend
	Slide 52: Grammars are a Browser’s Best Friend
	Slide 53: Grammars are a Browser’s Best Friend
	Slide 54: Grammars are a Browser’s Best Friend
	Slide 55: Grammars are a Browser’s Best Friend
	Slide 56: Grammars are a Browser’s Best Friend
	Slide 57: Grammars for APIs
	Slide 58: Grammars for Syscalls
	Slide 59: When in Doubt, Math it Out
	Slide 60: When in Doubt, Math it Out
	Slide 61: When in Doubt, Math it Out
	Slide 62: When in Doubt, Math it Out
	Slide 63: When in Doubt, Math it Out
	Slide 64: Reaching New Attack Surface
	Slide 65: 2019: 2046 Linux kernel bugs found & fixed by SyzKaller (BlueHat IL 2020) 2023: 4535 fixed Keeping average of 2-3/day
	Slide 66: Fuzzing Windows
	Slide 67: Fuzzing Windows with DBI
	Slide 68: Snapshot Fuzzing
	Slide 69: Snapshot Fuzzing
	Slide 70: Fuzzing Anything With Emulators
	Slide 71: WTF Fuzzer
	Slide 72: WTF Fuzzer
	Slide 73: kAFL / NYX Fuzzer
	Slide 74: kAFL / NYX Fuzzer
	Slide 75: “GDB Fuzzing”
	Slide 76: Differential Fuzzing
	Slide 77: Differential Fuzzing
	Slide 78: Differential Fuzzing
	Slide 79: Summary
	Slide 80: Thank You, WOOT’23 Questions?

