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Abstract—The key security principle that browsers adhere to,
such as the same-origin policy and site isolation, ensure that when
visiting a potentially untrusted website, the web page is loaded in
an isolated environment. These security measures aim to prevent
a malicious site from extracting information about cross-origin
resources. However, in recent years, several techniques have
been discovered that leak potentially sensitive information from
responses sent by other sites. In this paper, we show that these XS-
Leaks can be used to force an unwitting visitor to detect prevalent
web vulnerabilities in other websites during a visit to a malicious
web page. This lets an adversary leverage the computing and
network resources of visitors and send malicious requests from
a large variety of trustworthy IP addresses originating from
residential networks. Finally, we find that currently deployed
security measures are inadequate to thwart the realistic threat
of cross-origin vulnerability detection.

I. INTRODUCTION

As we visit a website, we usually do not know which
tasks our browser is performing in the background. This
characteristic has previously been abused to covertly perform
cryptomining on the browser of unwitting visitors [30], [6],
[9]. Similarly, malicious websites might determine whether
a browser is susceptible to known vulnerabilities and launch
drive-by download attacks [43], [54], [15]. Although both
crypojacking and drive-by download attacks have diminished,
either because it is no longer appealing from a financial point
of view [71], or because browsers have become increasingly
hardened [18], in this paper we show that the threat of illicit
background operations while visiting a website is still present.

Concretely, we explore in depth how a malicious JavaScript
payload served to unwitting visitors can force the browser to
detect vulnerabilities in other websites and report them back
to the adversary. In essence, the attacker abuses the resources
(computing and network) of a user who is lured to a malicious
website to launch cross-site attacks against targeted websites.
The attacks can be used to determine whether certain websites
are susceptible to prominent web vulnerabilities such as cross-
site scripting (XSS) and SQL injection. This provides the
adversary with several advantages. First, the IP addresses from
which the vulnerability-detection attempts originate, come
from residential networks and thus are more likely to be trusted
by intermediary security services, e.g. CDNs. Second, the
IP addresses are changing with every new visitor, allowing
the attacker to circumvent IP-based rate limiting systems that
e.g. protect the authentication flow. Finally, according to our
estimates and depending on the number of visitors that can be

lured to the malicious website, the attacker might have to pay
up to thousands of dollars to achieve the same characteristics
and attack capacities with existing services.

Because of the same-origin policy, a key browser secu-
rity principle, it is not possible to directly access cross-
origin responses, and hence various techniques are required
to circumvent these protections. We explore the feasibility of
using three different methods: abusing specific configurations
of the cross-origin resource sharing mechanism, leveraging
web rehosting services, and finally using XS-Leaks to leak
metadata of cross-origin responses. As the two former methods
provide the adversary with access to the full response body,
attacks can be launched in a similar way as to how an
adversary would from their own server. The methods that rely
on leaking side-channel information about the responses make
use of a combination of known techniques and novel XS-Leaks
that we discovered as part of our research.

Although websites are able to defend themselves from the
threat of cross-origin vulnerability detection by deploying vari-
ous security features, we find that in reality, only a tiny fraction
of sites is adequately protected. Furthermore, to fully counter
these attacks, an effort from various entities within the web
ecosystem is required: web rehosting services should adopt
effective defenses, website operators should deploy adequate
configurations, and browser vendors should mitigate cross-
origin leaks and, ideally, enable security measures by default.
As the complete mitigation of the cross-origin vulnerability
detection methods is an arduous process, we believe that
for the time being the attacks pose a realistic threat to the
web ecosystem, which should be taken into consideration by
websites and third-party security services.

Our main contributions can be summarized as follows:

• We thoroughly analyze the threat posed by cross-origin
vulnerability detection attacks based on three general
methods: abusing lax CORS policies, leveraging web
rehosting services, and using XS-Leaks to infer side-
channel information.

• We uncover two novel XS-Leak techniques that enable
cross-site vulnerability detection. These leaks can also
be applied in the more traditional context of cross-site
attacks.

• We develop a testbed to validate the effectiveness of the
attacks, and, using extensive public datasets, we evalu-
ate their performance and estimate the costs to achieve
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equivalent attack characteristics with existing services.
• We evaluate how currently deployed defenses, both by

websites and browser engines, mitigate the various vul-
nerability detection techniques and propose suggestions
to improve the current state.

II. MOTIVATION & THREAT MODEL

Despite the continuous efforts of the security community to
thwart web attacks and cybercrime in general, the number of
attacks launched against web applications is still increasing.
In their latest “State of the Internet” report, Akamai finds
that the number of daily attacks has significantly grown in
2021, with a peak of 113M attacks detected in a single day in
June 2021, three times the number of attacks observed the
previous year [1]. Similarly, Verizon reports in their latest
Data Breach Investigations Report (DBIR) that basic web
application attacks are increasingly more prominent as the
cause of security incidents or data breaches over the past
several years [72]. Detecting these vulnerabilities at large scale
may require extensive computing and bandwidth resources,
and their costs may outweigh any potential profits, e.g. from
selling data leaked from compromised websites. In this paper
we analyze a new threat where the resources of web visitors
are used instead.

A. Threat model

We explore how various techniques can be leveraged to
circumvent the same-origin policy and use the leaked infor-
mation, either the full response or side-channel data, to detect
common vulnerabilities in websites. More concretely, when
an unwitting user visits a malicious web page, which could
either be a website that is purposefully set up, compromised, or
that contains a malicious advertisement, a JavaScript payload
will force the user’s browser to initiate (cross-origin) requests
to other websites in order to detect whether these contain
vulnerabilities. In essence, the malicious JavaScript payload
will operate as a vulnerability scanner: by analyzing the
(metadata of) responses to attacker-initiated requests, it is
possible to infer whether a vulnerability such as XSS or SQL
injection is present. It is important to note that the requests
to the targeted website originate from the IP address of the
user who is visiting the malicious web page. Finally, in our
threat model, we assume that the attacker can force the user’s
browser to make illicit requests for the duration of a web page
visit, which is on average 54 seconds according to a recent
report by Contentsquare [14].

B. Advantages

Compared to a typical direct attack where the illicit re-
quests originate from the attacker-operated server, cross-origin
vulnerability detection methods presented in this paper have
several benefits that allow an adversary to overcome defen-
sive measures. Of course, these attack methods also have
limitations, as they rely third-party services or leverage side-
channel information. We discuss these limitations in detail

in Section VI-B. Cross-origin vulnerability detection has the
following advantages compared to direct attacks:

1) IP variability. As the vulnerability detection requests
originate from the IP address of a visitor, a new IP address
will be used for every new visitor. This high variability of
IP addresses can be valuable for an adversary, as websites
may deploy rate limiting systems. In a direct attack setting
this may be more challenging to achieve as the attacker would
have to pay for additional IP addresses in a cloud environment
(on AWS: $0.10 USD per IP remap [2]), or cycle through IP
addresses of a VPN service, which may also be limited.

2) IP reputation. In addition to the continuously changing
IP addresses, another benefit is that these IPs are of real
users, originating from residential networks. As many websites
deploy CDN services to thwart automated bots while still
allowing organic traffic, the IP reputation that users have built
up during prior browsing sessions is likely to have a favorable
effect on the bot-detection mechanisms.
To evaluate the extent to which websites block traffic based on
the reputation of the IP address, we performed an experiment
where we visited the home page of the top 1,000 Tranco
domains [33] via our university network, as well as via Tor,
which is known to be a common source of malicious traffic
(and the IPs are thus more likely to have a bad reputation).
For each page visit we took a screenshot and then manually
labeled these to determine whether the website blocked the
visit, e.g. by requiring a CAPTCHA or showing an “Access
Denied” message. We excluded page visits that did not load
successfully, either due to a timeout or because the domain
did not host a valid website. We found that 15.53% of
websites that were visited over Tor blocked the initial visit to
the homepage. Interestingly, 5.62% websites blocked access
from our university’s network (although half of those still
allowed Tor traffic); as the page visits were sequential, the
CDNs serving those websites probably detected this automated
traffic.
Another indication of the importance of IP reputation is the
rise of residential IP proxies [40]. Although these services
provide similar benefits, these come at a significant financial
cost, with a fixed subscription price costing several hundreds
USD along with a usage price of $10-15 USD per GB [8].

3) Operational costs. One of the key benefits of cross-
origin vulnerability detection is that the operational cost is
minimal. The adversary only needs to host a malicious web
page, which can be done for free via a public service such as
GitHub pages. The performance of the vulnerability detection
methods mostly depends on the number of visitors that are
driven to the malicious web page. The attacker can drive
visitors to their web page using a variety of techniques, most
of which are low-cost. Such techniques include blackhat SEO
and search poisoning [37], [74], [16], [67], spamming social
networks [21], [63], email and instant messaging spam [27],
[59], and advertisements [35], [64]. Additionally, when a
vulnerability was detected and exploited, the attacker could in-
clude the malicious payload in the compromised website [52],
[36] and benefit from its organic traffic.
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III. ACCESSING CROSS-ORIGIN RESPONSES

In a typical direct web attack, the adversary will send a
series of requests to the targeted server and will determine
whether a vulnerability is present based on the responses that
are returned. For example, to detect whether the website is
susceptible to a reflected XSS attack, the adversary can include
a JavaScript payload in one of the request query parameters
and subsequently parse the response to determine whether the
payload was adequately sanitized or escaped. Similarly, to
test for SQL injection attacks, the adversary will determine
whether a part of the payload was executed in the SQL query
by analyzing the response that was returned (e.g. the number
of results, returning an empty page, . . . ). Because of the
same-origin policy, access to the cross-origin response body is
blocked by default. In this section we explore two techniques
through which this restriction can be circumvented, and thus
allows having complete access to the response body.

A. Cross-origin resource sharing

One of the ways that browsers allow a relaxation of the
same-origin policy is through the cross-origin resource sharing
(CORS) mechanism [69]. By defining certain response head-
ers, a website can opt in to provide other origins access to
certain resources. More concretely, the Access-Control-
Allow-Origin (ACAO) header can be used to indicate
which origin is allowed access to the response. This header
also allows the wildcard value *, which gives every origin
access to the response. A caveat with this wildcard value is
that it does not support credentialed requests, i.e. requests
that include cookies. Therefore only vulnerabilities in the
unauthenticated part of a website can be detected with this
method.

To determine the prevalence of this wildcard CORS header,
we queried the latest (December 2022) HTTP Archive crawl,
which has detailed information about the homepage of more
than 12.5M sites. We found a total of 265,232 websites
(2.11%) for which the homepage was served with the ACAO
header set to *. Interestingly, we find that this header is
more commonly present on websites that are more frequently
visited: of the top 1,000 websites (according the Chrome User
Experience Report [23]) 9.09% allow all sites to access the
cross-origin response.

Listing 1: Example vulnerability detection payload.
let payload = '<script src="//atk.com/"></script>';
let url = `https://target.com/?param=${payload}`;
let options = {mode: "cors", credentials: "omit"};
let response = await fetch(url, options);
let body = await response.text();
let parser = new DOMParser();
let doc = parser.parseFromString(body, 'text/html');
let el = doc.querySelector('script[src="//atk.com/"]')
if (el) {
// script was injected; vulnerability detected
reportVuln(payload)

}

An example of how a reflected XSS vulnerability can be
detected on targeted website that sets a wildcard ACAO header
is shown in Listing 1. This script will request an endpoint
of the website where one of the URL parameters is set to

Attacker Site

https://attacker-site.com/

targeted-site.com 
("proxied") 

direct access (same-orgin)

attacker-site.com 
("proxied")

https://proxy-sndbx.com/... https://proxy-sndbx.com/...

top.frames[1].contentDocument 

fetch(url, {mode: "cors"})

postMessage() 
(cross-origin) 

Fig. 1: Abusing web rehosting services to circumvent SOP.

a payload that would include a script from atk.com. Next
it will use the DOMParser API [38] to parse the returned
HTML code and uses a CSS selector to determine whether the
script was parsed as such. This would indicate that the query
parameter was not adequately sanitized when it was reflected
in the response, and thus an XSS vulnerability was detected.

B. Web rehosting services

1) Overview: Web rehosting services, which consist of
online web proxies, web page translators and archival services,
take the content of a provided web page and serve it under
their own (sub)domain. In essence, these services operate as
an open reverse proxy, and thus will forward requests to the
targeted website, modify it (e.g. translate the text or inject
advertisements), and send the response back to the user. When
all websites that are accessed through the service share the
same origin, i.e. the origin of the rehosting service, this can
be leveraged to circumvent the same-origin policy. In prior
work, Watanabe et al. explored the consequences of this lack
of origin isolation, and described several attacks such as a
persistent MITM using service workers, and abusing privileges
(e.g. camera, microphone) that were provided to other rehosted
sites [75]. In their work, Watanabe et al. focus on the security
and privacy consequences for the users of these web rehosting
services, where the adversary is mainly interested in leaking
information from prior visits to other rehosted sites. Next, we
show how the lack of origin isolation in most of these services
also allows us to perform cross-origin vulnerability detection.

An overview of how the SOP circumvention by leveraging
web rehosting services is achieved, is shown in Figure 1.
When a user visits an attacker-controlled website, this site
will include an iframe of the rehosting service that “re-
hosts” an attacker-controlled web page. In the figure, this
is attacker-site.com that is rehosted on a sandboxed
origin of the proxy service: https://proxy-sndbx.com.
From this origin, the attacker has access to any other resource
that is served through the rehosting service. The attacker could
opt to access other rehosted resources either directly by using
a same-origin fetch(), or letting the browser render the
rehosted web pages in another iframe. The latter can still be
accessed directly via the DOM as the rehosted attacker page
has the same origin as the rehosted target website. Accessing
content from the iframe directly can be advantageous to detect
vulnerabilities such as DOM-based XSS, for which the web
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TABLE I: Summary of the susceptibility of web rehosting services to cross-origin vulnerability detection.

Defenses

Category Service
allows

SOP bypass
framing

protection
removes

scripts/iframes
cookie

verification
CSRF
token

custom
subdomain

all defenses can
be circumvented

can
install SW

supports
cookies

Proxy

ProxySite  # #  # #    
Hide My Ass!    # # #    
Sitenable Web Proxy  # # # # #   #
FilterBypass #     # # #  
ProxFree  # #  # #    
hidester  # #  # #    
GenMirror  #   # #    

Translator

Google Translate #  # # #  # # #
Weblio  # # # # #   #
Yandex.Translate # # # #  # #  #
Baidu Translate  # # # #  # #

Archive
Wayback Machine  # # # # #  # #
Google Cache  # # # # #  # #
FreezePage  #  # # #  # #

Total 11/14 3/14 3/14 5/14 2/14 1/14 11/14 8/14 6/14

page needs to be rendered. When the web rehosting service
forwards the Set-Cookie headers of the rehosted web page,
it is also possible to perform the vulnerability detection on
authenticated parts of websites.

2) Evaluation: To evaluate the extent to which these web
rehosting services can be abused to launch cross-site vul-
nerability detection attacks, we analyzed the set of rehosting
services that were previously evaluated by Watanabe et al. [75]
and were still available at the time of our analysis (January
2023). The results of our analysis are shown in Table I. We
find that 12 out of the 14 analyzed web rehosting services
can be abused to circumvent the same-origin policy in order
to perform cross-site vulnerability detection. Compared to the
study of Watanabe et al. [75], we find that only Google
Translate took adequate efforts to prevent attacks.

3) Bypassing controls: Although two services, GenMirror
and FreezePage, were considered not exploitable in prior
work, as these block JavaScript on the page, we managed to
bypass all imposed defenses, and find that these are in fact
vulnerable. GenMirror blocks JavaScript responses based on
the response content type, and would thus prevent an attacker-
controlled JavaScript payload to be executed. However, this
can be trivially bypassed by using capitalization in the content
type (e.g. text/jaVascript), which was missed by the
service but is supported by the browser. The FreezePage
proxy service rewrites HTML to exclude any <script>
elements. We managed to circumvent this defense by using
<iframe> elements with a srcdoc attribute and subse-
quently using HTML entities to encode the script element:
&lt;script&gt; [51].

Other defensive mechanisms that were present include fram-
ing protection, verifying that the user has a valid cookie,
and enforcing that page visits can only be made through
a form for which a CSRF token is required. For the web
rehosting services that do not prevent installing a service
worker, we could circumvent the framing protection defense
by first installing the service worker and subsequently letting
it intercept all requests. The service worker would then act
as a MITM and remove the X-Frame-Options and CSP
headers, disabling the framing protection.

Because several browsers set the SameSite attribute of
cookies to Lax by default, these cookies will not be attached
to the request when the rehosting service is included in a
cross-origin iframe. Consequently, services that require the
presence of a valid cookie can only be used in a top-level
document (i.e. when the rehosting service is not included in
an iframe). However, we found that for all services except
FilterBypass this restriction could be lifted by setting a cookie
via JavaScript with the SameSite attribute set to None. By
giving this cookie a stricter Path or Domain attribute, it
will override the default cookie, and will be included in all
subsequent requests.

Finally, we evaluated whether it was possible to install a
service worker that could intercept requests to other rehosted
sites. For this, the service had to proxy JavaScript files, and
leave them unmodified. Furthermore, the origin and path on
which the rehosted site is hosted should be the same for all
sites. On 8 rehosting services we found that a service worker
could be installed. This could be leveraged to extend the
lifetime during which attacks can be executed (service workers
remain active for some time after the user has left a page [13]).
Furthermore, any subsequent time that the user would visit the
rehosting service, the attacker could inject a malicious payload
and make the user’s browser perform cross-origin vulnerability
detection.

Summary. We found that only two defenses could not
be circumvented: using custom subdomains and limiting the
user’s actions by using a form that requires a valid CSRF
token. As such, we believe that these are the most effective
methods to prevent these services from being abused to
circumvent the same-origin policy. We notified the affected
web rehosting services of our findings.

IV. LEVERAGING SIDE-CHANNEL INFORMATION

In the previous section we explored how web technologies
could be leveraged to access cross-site response bodies. A
downside, from the attacker’s perspective, of these methods is
that these either rely on a specific configuration of the target
server (CORS headers), or require the support of third-party
web rehosting services. In this section we focus on techniques
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that are more generic and that can be used to detect prevalent
web vulnerabilities in a cross-origin context without requiring
opt-in mechanisms or third-party services. These techniques
leverage side-channel attacks, commonly referred to as XS-
Leaks, to leak meta-information about cross-origin responses.
XS-Leaks have been commonly used to detect information
about the response to authenticated requests, i.e. to infer the
state that the victim shares with a targeted websites. However,
in the context of cross-site vulnerability detection we aim
to determine the state of the targeted website instead, i.e. to
determine whether a vulnerability is present.

A. Overview of known XS-Leaks

Next, we provide a brief summary of the known XS-Leak
techniques that we leverage for the purpose of cross-origin
vulnerability detection. For an extensive overview of all XS-
Leaks that have been discovered to date, we refer to the XS-
Leaks Wiki [81] and the research by Sudhodanan et al. [61],
Knittel et al. [28], and Van Goethem et al. [65].

Response size. In 2007, Bortz and Boneh showed that it
is possible to leverage the network response time to estimate
the size of a resource [7]. As these timing measurements are
subject to the network conditions of the client, attacks may be
impractical. More recently, Gelernter and Herzberg showed
that by leveraging response inflation, these techniques could
still be successfully exploited [19]. Moreover, Van Goethem
et al. introduced several mechanisms to estimate the response
size based on the time it takes the browser to parse or process
its contents, thereby making the attack independent of the
client’s network conditions [66].

Response status. Several researchers have shown that it is
possible to differentiate between different response statuses,
e.g. 200 vs. 500 [34], [57]. Some other techniques can be
used to detect whether a redirect has occurred. For example
the History API leaks the number of redirects that occurred
via the history.length property [80]. This however only
applies to client-side redirects, i.e. via JavaScript or a <meta>
tag. To detect server-side redirects, i.e. responses with a 30x
status code, it is possible to leverage the maximum number of
redirects that is allowed before a network error is returned [24].

Resource content and operations. Another aspect that
may be detectable is based on the content of a HTML-
resource and the operations it performs. For instance, when
an HTML-resource is included in an iframe, or opened via
window.open(), it is possible to determine the number
of iframes it contains by accessing the frames.length
property. Similarly, a resource may perform an action that can
be observed from a cross-origin window. Sudhodanan et al.
found that certain web pages would send a postMessage()
message based on the state of the user [61].

B. Novel XS-Leaks

As part of our research, we uncovered two novel XS-Leak
attacks. Although we use these techniques as part of our
vulnerability detection methods, they can also be used to leak
information about the state a user has with a targeted website.

Presence of subresources. When a web page is rendered,
the same-origin policy prevents any cross-origin window
from inferring whether any subresources were fetched. We
found that this protection could be circumvented by carefully
arranging the navigation of an iframe’s browsing context.
More concretely, an adversary will first create a new iframe,
which will have the same origin as the embedding web page,
thus allowing access to its DOM properties (e.g. iframe.
contentWindow.origin). Next, the src attribute will be
set to the targeted web page. This will trigger the browser’s
renderer to fetch the HTML document. Once the document
has been downloaded, the iframe’s browsing context will be
navigated to the target page, and thus the origin of the iframe’s
document will change, making it no longer accessible by the
embedding attacker page. It can be observed by the adversary
when this navigation happens, as it coincides with the time
that accessing a DOM property of the iframe will throw an
exception.

As soon as the attacker catches an exception, it will set the
src attribute back to about:blank. Although this empty
document does not take a long time to load, the renderer at
this time is still occupied with parsing the HTML from the
target page. We found that if this page does not contain any
subresources, the browser would first fire a load event on
the iframe before the navigation to about:blank occurs. If
subresources need to be downloaded, the load event would
not be fired. We tested this in all major browser engines, and
found that it consistently revealed the presence or absence of
subresources. Finally, we found that this method could also be
used to detect the presence of framing protection (via XFO or
CSP), as the network error page does not include any remote
resources. A detailed timeline of this technique can be found
in Figure 4 in the Appendix.

CDN cache status. For performance reasons, many web-
sites serve resources via a CDN, which has a world-wide
network of “points of presence” (POP) that deliver cached
resources to users in their geographic vicinity. To facilitate
debugging, most CDNs use a custom header to indicate
whether a resource was served from the cache or had to
be obtained from the origin server (a recent effort aims to
standardize such a header [44]). In the case when the cache
state of a specific resource is directly related to a secret, i.e.
unknown to the adversary, condition, determining this cache
state reveals this secret. We find that for most CDNs, the
cache state could be determined based on the response headers,
as was previously shown by Mirheidari et al [41], [42]. In
a cross-site attack, this would require the CDN to set an
Access-Control-Expose-Headers (ACEH) response
header along with a permissive Access-Control-Allow-
Origin (ACAO) header, which we found in over 44,000
instances (out of 42.5M requests). Alternatively, we found
that the timeless timing attacks introduced by Van Goethem
et al. [68] could also be used to reliably determine the CDN
cache status of a resource.
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Fig. 2: Cross-site XSS detection.

V. VULNERABILITY DETECTION THROUGH XS-LEAKS

In this section, we explore in detail how XS-Leaks can be
used to detect the most common web vulnerabilities, based on
the OWASP top 10 [46] and reports on the prevalence of real-
world web attacks [1], [72]. We report on how four prominent
web vulnerabilities can be detected in a cross-origin context,
using the computing resources and network connection of
unwitting visitors.

A. Cross-site scripting

Caused by improperly escaping or encoding attacker-
controlled input, XSS vulnerabilities allow the adversary to
execute JavaScript code in the origin of the targeted website.

postMessage. To detect the presence of an XSS vulnera-
bility, the attacker can try to inject a JavaScript payload that
will perform cross-origin communication. The most straight-
forward way to do this is by using the postMessage API.
Hence, when a message is received, the adversary can infer
that the payload was successfully executed, implying that a
vulnerability is present. In practice, the attacker can choose
to include the targeted web page either as an iframe or in a
new top-level window. An advantage of the former is that the
detection attempts remain invisible from the visitor. However,
the iframe-based method only works if the targeted page does
not enforce framing protection.

Frames. Instead of injecting JavaScript code, the adversary
could also try to inject other elements as this will still reveal
whether the attacker-provided content is not properly sanitized
or encoded. By injecting a number of <iframe> elements,
the attacker could easily determine whether this injection
was successful by simply counting the number of frames -
a property that is accessible in a cross-site context due to
historical reasons.

Prerender. Finally, a third technique relies on the prerender
functionality which, at the time of writing, is only available
in Chromium-based browsers [5]. Despite what the name sug-
gests, prerender will only prefetch the subresources (excluding
iframes) of a web page. Furthermore, the prerender process
occurs in the background and the page requesting the prerender
(using a <link> element) has no reference to it. As a result,
neither of the previous two techniques can be used to detect
improper sanitization of the attacker payload. Instead, we can

leverage our novel “CDN cache status” leak. Concretely, the
attacker’s payload can attempt to include an <img> element
with the src attribute set to one of the hosts that set its
ACAO and ACEH headers to reveal the cache status. Note
that although we found that only 0.10% of resources have
such headers, only a single host with such a configuration
is required for the purpose of the attack. With over 44,000
instances that match the criteria, an attacker has plenty of
options.

B. SQL injection

We found several XS-Leak methods that can be leveraged to
detect SQL injection vulnerabilities in a cross-origin context.
In essence, the adversary will try to determine whether their
payload was able to control the SQL query, which can be
revealed by returning additional data (response-based), exe-
cuting a function that takes a long time (timing-based), or that
would throw an error (error-based). We describe how each of
these three methods can be detected using XS-Leaks.

Response inflation. If the attacker is able to perform
an injection where an additional query is included in the
result (e.g. by using an UNION SELECT construct), it is
possible to inflate the response document. More precisely,
the attacker can trigger the server to return a long random
string, and measure the response time. Note that because most
web servers use gzip compression for responses, the string
should have a low compression ratio. In our experiments, we
found that using a combination of REPEAT("a", 1e6) and
the DES_ENCRYPT() function can inflate the response with
approximately 1MB, which can be easily detected using a
timing attack.

Time inflation. When launching a timing-based attack, the
attacker will trigger a delay in the execution (e.g. with the
SLEEP() function) when the exploitation is successful. If
a sufficiently large delay is triggered, the attacker can easily
observe this with a network timing attack [7], or use a timeless
timing attack to measure the difference in execution time on
the server [68].

Error detection. Finally, to detect SQL injection attacks
via the error-based method [22], we can leverage any XS-
Leak that reveals the error status code of the response [34],
[81]. Note that if the server would catch the error caused by
the SQL query and simply display a message, it would not
be possible to reliably determine this difference using XS-
Leaks. Alternatively, the “presence of subresources” XS-Leak
described in Section IV-B can be used as well, assuming the
error page does not contain subresources.

C. Login brute forcing

A common cause of compromise on the Web is using a weak
password (guessed in a brute force attack), or reusing the same
password for different websites. In order to limit the success
of such attacks, websites often rate limit the login flow. This
makes it a particularly interesting target for cross-site vulner-
ability detection due to the high variability of IP addresses
from which the attacks are launched. To verify the feasibility

6



of a cross-origin login brute force attack, we analyzed the
five most popular content management systems (according to
W3Techs these are: WordPress, Shopify, Squarspace, Joomla,
and Drupal [73]). Three of these CMSes protect against login-
CSRF attacks by requiring a unique token in the login form
(Joomla and Squarespace), or by checking for the presence of a
SameSite cookie (Shopify), and thus are unaffected by the
attacks. Nevertheless, we found that WordPress and Drupal,
which have an accumulated market share of 67.27% and are
installed on 44.6% of websites [73], can still be attacked.

History API. The cross-site login brute force attack can be
performed against two operations, either the login mechanism
itself or the state-change that happens as a result. In many
login mechanisms, including that of WordPress, the user is
redirected to the admin panel after successful authentication.
By detecting this redirect, the attacker can infer whether the
credentials are valid. One way to detect this is by leveraging
a side-channel based on history.length [80]. More
precisely, the attacker first creates a (same-origin) iframe with
a form containing the tested credentials as input fields, and
the action attribute set to the targeted website. Before sub-
mitting the form, the attacker records the history.length
property. Once the form is submitted, a login attempt will be
made and eventually the load event will fire on the iframe,
indicating that the page has loaded. At this point, the attacker
will set the src attribute of the iframe to a page they control,
and read out the history.length property. If the login was
unsuccessful, and no redirect happened, history.length
will not have increased. Otherwise, if the credentials were
correct, and the client was redirected to wp-admin/, in which
case the history.length property was incremented.

D. Server-side request forgery

In a server-side request forgery (SSRF) attack the adver-
sary tricks the targeted web application to send an attacker-
controlled request. Typically this request targets an endpoint
that is only accessible locally from the web server, and thus
may not be as well-protected as the internet-facing applica-
tions. To detect the presence of an SSRF vulnerability, the
attacker needs to detect whether the affected endpoint caused
a request to be sent.

Web hooks debugger. The adversary can leverage popular
third-party services that are used to debug web hooks by
providing a unique endpoint where all requests are logged.
Examples of such services include RequestBin [50], Beecep-
tor [4], Webhook.site [76], and several others. Using one of
these endpoints as the target URL will log information about
the request, if one is made. However, the attacking page can
not access this information in a cross-origin context, so either a
web rehosting service should be used to circumvent the same-
origin policy, or the adversary could access the service directly.
Any request logged by the web hook services likely indicates
a detected vulnerability.

TABLE II: Runtime of vulnerability detection techniques.

Technique Execution time Concurrent?
XSS-IFRAME RENDER  
XSS-WINDOW RENDERp95 #
XSS-PRERENDER RENDERp95 + FETCH  
SQLi-RESP-INFL FETCH  
SQLi-TIME-INFL FETCH  
SQLi-ERROR FETCH  
LOGIN-HISTORY 2×RENDER  
SSRF-WEB-HOOK FETCH + RENDER proxy  

E. Evaluation

1) Effectiveness: To evaluate the effectiveness of the differ-
ent cross-site vulnerability detection mechanisms, we created
a testbed with a website based on WordPress (the most popular
CMS), in which we introduced several vulnerabilities. We
implemented each technique and tested them on the most
popular web browsers (Chrome, Firefox, Edge, Safari) [60].
All the detection techniques rely on side-channel information,
and thus may be affected by the conditions of the client’s
environment. To evaluate this impact, we performed exper-
iments under varying conditions (cabled network vs. Wi-Fi
connection, interaction from the user on the malicious site, or
video streaming in another tab). We found that each technique
was highly reliable and consistent, as most either rely on
deterministic behavior (e.g. counting the number of frames),
or have a very high signal-to-noise ratio (e.g. using a timing
side channel to detect a response size difference of 1MB –
prior work has shown that a difference as small as 5kB can be
reliably detected [66]). Similarly, an additional timing delay
of 5 seconds outweighs the jitter on a network connection by
several orders of magnitude.

2) Performance: The rate at which the vulnerability de-
tection techniques can be performed mostly depends on the
environment of the visitor who is executing the malicious
scripts. As most techniques rely on sending requests and
observing their side-effects, the latency of the visitor’s network
connection is typically the limiting factor. For the methods that
require rendering a web page, the specifications of the user’s
machine will also play a role. To evaluate the performance of
the different techniques, we determine which operations are
required to perform a single detection. In essence, there are
two main operations that need to be considered: fetching a
resource (FETCH) and rendering a page (RENDER).

In Table II we show the operations that are required to
perform a single detection for each of the techniques. For
most techniques only FETCH operations are needed. For the
detection techniques that rely on rendering a web page in a
separate window, the attacker cannot determine when the page
finished loading. Hence, we assume that the attacker needs to
wait for a duration that matches the 95th percentile of average
loading times of web pages. Although vulnerabilities in web
pages that load very slowly will not be detected, we believe
this would be an acceptable trade-off for the adversary. We
note that although the SQLi-ERROR technique includes the
target page in an iframe, it will stop loading the page as soon
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as the HTML of the page has been downloaded. As a result,
only a FETCH operation is required.

To determine the average duration for the different oper-
ations we use the measurement data from the Chrome User
Experience Report (CRuX) which reflects the loading times
for a large number of users for 8M websites [20]. To estimate
the duration of the FETCH operation we use the time-to-first-
byte (TTFB) measurement, for which we find a median value
of 400ms for desktop and 500ms for mobile. For the RENDER
operation, we use the time until the load event is fired,
for which the median values are 1.9s and 2.6s for desktop
and mobile respectively. The 95th percentile for these is 4.9s
for desktop and 7 seconds for mobile. For completeness, we
show the full distribution of both TTFB and time to load in
Appendix B.

Finally, we evaluated whether the techniques could be
executed concurrently. For instance, instead of a single iframe
the attacker can use multiple iframes to load the web pages
in parallel. Similarly, asynchronous requests can be launched
concurrently, with a limit of 6 concurrent connections per
host for HTTP/1.1 [53], and no limit for HTTP/2 or HTTP/3.
Based on our experiments on a Macbook Pro with a 2.3GHz
i5 processor, we found that on average a 4.27× performance
increase could be achieved using 5 concurrent iframes. By fur-
ther increasing the concurrency, the CPU load would become
the bottleneck, resulting in limited additional performance
gains and eventually the attack would become noticeable by
the user as the laptop’s fans would activate. For concurrent
fetch operations, a concurrency factor of 20 to 50 could be
easily achieved, depending on the latency to the server (higher
latency results in longer idle time and thus allows for higher
concurrency).

3) Operational cost benefits: In cross-origin vulnerability
detection the adversary only needs to host the malicious
JavaScript on a web server (∼$30 USD/month). To evaluate
the financial benefit for an adversary, we estimate the number
of attacks that can be performed given a number of visitors that
execute the malicious payload, and calculate the equivalent
cost of running the attack on a cloud environment. We consider
three types of setups: 1) directly from the cloud provider,
2) using Tor to connect to the target sites, and 3) using a
residential VPN. Because the latter two, and especially Tor,
introduce additional latency, it takes much more time to launch
an attack and thus more servers are required to achieve a
similar vulnerability detection rate. For our estimation we
take into account the average page visit time (54s [14]),
concurrent browser instances on a cloud instance (2 browsers
per CPU), latency (based on Tor performance metrics [62] and
the CRuX dataset [20]), pricing for cloud services (computing:
$0.15USD per hour for 4 vCPUs, egress data: $0.15USD
per GB [3]), and various pricing plans for residential VPN
services [8]. We report on the option that is most affordable
for the adversary given the various parameters.

In Figure 3 we show the estimated cost for cloud and
residential VPN services to achieve an equivalent number
of detection attempts compared to cross-site vulnerability
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Fig. 3: Estimate of costs that need to be spent to achieve an
equivalent number of direct attacks on a cloud instance.

detection performed by a certain number of users (in the
graph these range up to 1 million). For reference, Grier et al.
find in their 2010 study that spam links on Twitter attracted
over 1.6M visitors [21]; Oest et al. find that phishing sites
may attract several tens of thousands of visitors within a few
days [45]. Note that in the case of the attacks presented in
this paper, the website embedding the malicious payload can
appear completely legitimate, and thus may be less subject to
takedown attempts.

We estimate that the cloud costs that are equivalent to
10,000 page visits is approximately $25 USD when a direct
connection is used. However, since the cloud provider’s server
is directly attacking other websites, it is likely to quickly
receive complaints, which would eventually lead to shutting
down the attacker’s server or even their account. The attacker
could instead leverage the Tor network to hide the originating
IP address of the attack, preventing targeted websites to cor-
rectly attribute the source of the attacks. Due to the additional
latency imposed by the Tor network, the attacks would incur a
significant performance loss, and the equivalent in cloud costs
would almost double: $47 USD for 10k page visits, $472 USD
for 100k visits, . . . Moreover, as we show in our experiment in
Section II-B, traffic from the Tor network is much more likely
to be blocked (∼15% sites blocked every request originating
from Tor). Hence, we argue that the cross-site vulnerability
detection techniques presented in this paper is most closely
related to using a residential proxy when launching attacks.
Interestingly, the costs for these proxies significantly outweigh
the cloud computing costs, and we find that an attacker would
have to pay almost $8,000 USD to achieve the equivalent
vulnerability detection capacity of 10k page visits. This is
in very stark contrast to the cross-site vulnerability detection
setup, where the attacker has a fixed cost of ∼$30 USD per
month, making it much more economically viable to launch
attacks this way.

VI. DEFENSES

In this section we explore to what extent defenses in the
current Web landscape can thwart the threat posed by cross-
origin vulnerability detection. Furthermore, we analyze what
additional steps can be taken by website administrators and
browser vendors to protect websites and their users.
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TABLE III: The percentage of cross-origin vulnerability detection attempts that is prohibited by various security features.

Defenses
Vulnerability Detection technique CORB CORP COOP SameSite CSP framing protection Overall

XSS

postMessage() (iframe) - - - - 0.17% 24.24% 24.30%
postMessage() (window) - - 0.16% - 0.17% - 0.34%
frames.length (iframe) - - - - - 24.24% 24.24%
frames.length (window) - - 0.16% - - - 0.16%
Prerender - - - - 0.61% - 0.61%

SQL injection
Response inflation 72.99% 0.031% - - - - 73.00%
Time inflation - - - - - - -
Error detection - - - - - 24.24% 24.24%

Login brute-force History API - - 0.043% ∼72.99% - 24.24% 79.54%
SSRF Web hooks service - - - - - - -

A. Browser security mechanisms
For each security mechanism we evaluate to what extent

it impedes the different cross-origin vulnerability detection
techniques. In Table III we show the percentage of attacks
that will be blocked by a certain defense; a dash (-) indicates
that the defense is ineffective against the technique. For each
feature that is enabled through a response header, we will
determine for which sites the policy defined in the header will
be sufficient to thwart an attack. For instance, a CSP policy
with unsafe-inline will be ineffective at stopping the
XSS detection method using the postMessage API. We base
our results on the HTTP Archive dataset [25]. For features that
are enabled by default in the browser, we consider the market
share of the browsers that support the feature, according
to the latest (December 2021) statistics of statcounter [60]:
Chrome: 63.8%, Safari: 19.6%, Edge: 3.99%, Firefox: 3.91%,
Samsung Internet: 2.85%, Opera: 2.35%. Note that Chrome,
Edge, Samsung Internet and Opera are based on the Chromium
engine; Safari is based on WebKit and Firefox on Gecko.

CORB. Originally developed as a defense against Spec-
tre attacks [29], Cross Origin Read Blocking (CORB) aims
to prevent sensitive resources to be loaded in the renderer
process [11]. The CORB mechanism will try to detect the
content type of the response, and if it considers it to be
potentially sensitive (HTML, XML & JSON), it will stop
loading the resource. This defense, which is enabled by
default in Chromium-based browsers (72.99% market share),
mitigates detection methods that rely on detecting the response
size.

CORP. The Cross-Origin Resource Policy (CORP) mech-
anism has the same goals as CORB but instead requires an
explicit opt-in from the developer by setting the appropriate
response header [70]. It is supported by all browser engines.
We found only 1,794 websites (0.031%) that enabled this
header with a same-site or same-origin value on their
homepage.

COOP. To prevent other, cross-origin windows from retain-
ing a reference to the current window, a web developer can
leverage the recently introduced Cross-Origin Opener Policy
(COOP) [26]. This mechanism will instruct the browser to
disassociate two windows by removing any reference they may
have to each other. As such, when opening a page with a
COOP policy set, it will not be possible to close it, redirect
it elsewhere, or access any of its properties. We found 9,101
(0.16%) sites that enabled COOP and thus prevented attacks

that relied on opening a new window. For the error-detection
and History API techniques we only considered websites that
also enabled framing protection: these two techniques can be
applied either using an iframe or new window, and COOP
alone does not provide sufficient protection for the former.
Surprisingly, only 2,490 sites (0.043%) enabled COOP in
combination with framing protection.

SameSite cookies. The SameSite attribute can be used
to indicate whether a cookie should be included in cross-
origin requests: when the value is set to Lax or Strict,
cookies will not be included in cross-site requests [39]. On
Chromium-based browsers, the default has been set to Lax,
with other browsers likely to follow soon [10], [56]. In this
paper we mainly focus on detecting vulnerabilities in the
unauthenticated part of a website, and thus most methods do
not rely on cookies as previous studies [55]. One exception is
the login brute-force technique leveraging the History API: if
the redirect only occurs when the user’s cookies are included
in subsequent requests, the SameSite=Lax cookies will prevent
this detection method. As the HTTP Archive dataset only
contains information about unauthenticated page visits, and
it is unclear which cookies would be used for authentication,
it is infeasible to determine the exact impact. Therefore we
estimate the percentage of prevented attacks to be the market
share of the browsers that enable the feature by default.

CSP. Through a number of content security policy (CSP) di-
rectives, websites can instruct the browser to enforce a variety
of aspects [78]. For instance, via the script-src directive,
website can instruct the allowed source from which scripts can
be included. Unless the unsafe-inline attribute is present,
this is an effective way to stop most XSS vulnerabilities from
being exploited. Furthermore, CSP can be used to provide
framing protection, which we will consider together with
XFO, and to upgrade insecure requests (the most widely used
directive) [58]. For the vulnerability detection mechanisms,
we find that the techniques based on the postMessage API
could be thwarted by CSP, as these will inject JavaScript code
and rely on it being executed. Although 175,680 sites (3.02%)
enable CSP, we found that only 10,097 (0.17%) enforced a
strict policy to thwart reflected XSS vulnerabilities; i.e. no
’unsafe-inline’ nor a wildcard source (e.g. https:/
/*). Furthermore, we found that 0.61% of sites would restrict
the sources from which images could be included, impeding
our prerender-based detection method. Note that the frame-
based detection method for XSS is unaffected by any CSP
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policy; however, exploiting the vulnerabilities will likely re-
quire manual analysis to find a CSP bypass [77].

Framing protection. To prevent a web page to be framed
by another, it is possible to use the X-Frame-Options (XFO)
header or the frame-ancestors directive of CSP. We
found that 24.24% of sites enabled framing protection either
via XFO or a non-wildcard CSP policy. Although the login
brute force detection method leveraging the History API can
also be launched with new windows, this may be more
noticeable to users and thus an unfavorable option for the
adversary. Hence, we consider that framing protection also
impedes it.

Overall. Finally, we determine the extent to which certain
detection methods are prevented by considering all different
defenses. Generally, we find that for each vulnerability there
exists at least one cross-origin detection technique that is not
stopped in more than 99% of cases. The defenses that have
the largest impact are those that are enabled by default: CORB
and SameSite cookies, as the adoption of security features by
websites is fairly limited. This also provides browsers with the
most opportunities to thwart the potential threat of cross-origin
vulnerability detection.

B. Limitations

Although we have shown that detecting common vulnerabil-
ities in a cross-origin context is feasible, these still face a num-
ber of practical limitations. Most importantly, in comparison to
direct attacks, the adversary has less control over the requests
that are sent to the target server. For instance, browsers limit
the request headers that can be used, or which values it sup-
ports, e.g. the Origin or User-Agent headers cannot be
controlled by the adversary. Consequently, vulnerabilities that
require the manipulation of these headers, e.g. when the user
agent string is logged using a vulnerable Log4j library [79],
cannot be detected in a cross-origin context. Similarly, the
detection methods can only be applied to applications that use
HTTP for communication.

Another limiting factor is that for the detection methods
relying on XS-Leaks, the body of the response is not ac-
cessible. This means that the adversary cannot iteratively
adjust their payload based on the response, and thus a single,
uniform payload should be used, which ideally can be applied
in most situations. Furthermore, this limitation prevents the
adversary from crawling through the site. To overcome this,
web rehosting service can be used in conjunction with the XS-
Leaks-based methods, where the former is used for website
exploration and the latter to detect vulnerabilities.

VII. RELATED WORK

Prior work has reported on various malicious operations that
are executed in the background when visiting a website. For
example, Papadopoulos et al. describe MarioNet, a web-based
botnet that leverages various HTML5 features such as service
workers to achieve persistent and stealthy infection [48]. This
persistence can be used to launch DDoS attacks, store files,
or perform cryptocurrency mining. This persistence could

also be leveraged to extend the lifetime of our cross-origin
vulnerability detection attacks. However, at the time of writing,
browsers have limited the background operations of service
workers to a maximum of 30 seconds [13], hence we do not
consider it a viable option.

In 2006, Lam et al. explored how web browsers could be
misused to perform various attacks, such as denial of service
and reconnaissance scans [32]. Moreover, they propose worm
propagation by launching CSRF attacks that include the mali-
cious payload. In our paper, we show that with more advanced
techniques based on XS-Leaks, custom web applications can
be scanned for vulnerabilities. Upon compromise the affected
websites could be made to serve the malicious payload, a tactic
that is known to be successful [52]. Other work on malicious
browser operations have focused on forcing unwitting visitors
to perform DDoS attacks [31], [49], [47] or cryptojacking [17].

VIII. CONCLUSION

In this paper we explore the potential threat posed by cross-
origin vulnerability detection. We demonstrate that the restric-
tions imposed by the same-origin policy can be circumvented
in three ways: abusing permissive CORS policies, leveraging
web rehosting services, and exploiting the various leaks in
modern-day browsers. These techniques either provide the
adversary with complete access to the response body (CORS &
web rehosting services), or relevant side-channel information
that reveals whether a vulnerability is present (XS-Leaks).
Both have their advantage and disadvantages, and we believe
it would likely be most opportune for an adversary to combine
both techniques, e.g. using CORS and web rehosting service
for content discovery and crawling purposes, and XS-Leaks
for the actual vulnerability detection.

These novel ways of detecting common vulnerabilities in
websites has a number of advantages over the traditional
techniques where an attacker-controlled server is used to
directly attack websites. Most prominently is the fact that with
cross-site vulnerability detection the IP addresses from which
attacks are launched have a high variability and primarily
originate from trusted, residential networks. This significantly
complicates the detection, e.g. by security services, of such
attacks, and may limit the effectiveness of rate-limiting sys-
tems. Another critical advantage of these type of attacks
is the operating cost for the adversary, which is limited to
hosting a single website. Finally, we find that the defense
mechanisms that are currently deployed in the web ecosystem,
either enabled by default in the browser or opted in to by
websites, are mostly ineffective at thwarting these attacks.

Ethical considerations

As a result of our research, we discovered several vulner-
abilities, affecting multiple parties. The bugs we uncovered
in the browser engines were reported to the relevant vendors.
All evaluations of our vulnerability detection techniques were
launched against our own servers, hosted on a custom domain.
We took necessary precautions to ensure no other users or
services were involved in our evaluations.
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APPENDIX

A. Detailed description subresource detection XS-Leak

In Figure 4 we show a detailed timeline of the operations
that happen with a web page with or without subresource is
loaded in an iframe. In the attack, the adversary will create
a new iframe and first navigate it to about:blank. At this
point, the iframe inherits the origin of the embedding window,
namely https://attacker.com, and polling for DOM
properties is still possible. Next, the attacker will navigate the
iframe to the target page, on a different origin (https://
target.com). This will cause the renderer process to fetch
the response body of this page. Once the HTML has been
downloaded, the renderer will make the iframe navigate to the
origin of the target page. When this happens, it is no longer
possible to access DOM properties, as this would violate
the same-origin policy. Instead, the browser will throw an
exception, which can be caught to know when the change of
origin occurred. As soon as this happens, the attacker will set
the src attribute back to about:blank. However, at this
time to renderer is still parsing the HTML of the target page.
We find that if this parsing process encounters no subresources
that need to be loaded, a load event will be fired on the
iframe before it is navigated to about:blank. Otherwise,
the loading of the subresources would delay the load event,
causing it to never be fired.

B. CrUX timing distributions

In Figure 5, we show the distribution of the time-to-first-
byte for both desktop and mobile, based on the data available
in the Chrome User Experience Report. The time-to-first-byte
indicates the time between the start of the initialization of
a connection and the first byte of the actual response being
received. As such, it includes the multiple hops required to
establish a TCP connection and TLS session. Note that this

is likely an overestimation for the time to fetch a response as
the multiple hops required to establish a connection are only
required once; for the following requests the connection can
be reused.
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Fig. 5: Distribution of the time to first byte.
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Fig. 6: Distribution of the time to the load event.

Similarly, in Figure 6 we show the distribution of how long
users take to load a web page, measured based on the time
that the load event is fired. This coincides with the time that
all subresources have been loaded by the browser.
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Fig. 4: Timelines of 2 iframe loads for a document without subresources (left) and one with (right). The bar in the center
indicates the current origin of the iframe (attacker.com is red and target.com is indicates as green).
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