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Abstract—Shellcodes are short, executable code frag-
ments that are utilized in various attack scenarios where
code execution is possible. When they are injected
through the program’s inputs, they may require to be
validated by filters, the most common of which is a
restriction on the allowed character set. This paper
explains how to design RISC-V shellcodes capable of
running arbitrary code whose UTF-8 representation
uses only Unicode emojis.

Our approach to this problem is inspired by code-
reuse attacks and involves the use of small, reusable
code snippets called gadgets. By chaining these gadgets
together, we are able to build a shellcode that can
bypass the constraints imposed by filters, making it
more versatile and effective in a wider range of attack
scenarios.

I. Introduction
Memory corruption vulnerabilities, particularly stack-

based overflow attacks [1], remain a popular method for
hackers to gain unauthorized access to a program. Hackers
often use shellcodes, short executable code snippets, as a
means of injecting their payload. While it is commonly
believed that shellcodes can be easily distinguished from
legitimate data using methods such as signature-based
detection [18] or executable space protection [21], they
still present a significant threat, particularly in mobile and
low-power embedded systems.

RISC-V, a popular architecture in embedded systems,
is becoming increasingly attractive to low-level attackers,
whose tools are traditionally geared towards x86 platforms.
However, the use of filters accepting only the allowed
character set, common in text-based applications, can make
it more difficult for attackers to successfully inject their
shellcodes.

In this context, it is important to note that low-level
segments of code such as Java Native Interface in mobile
applications, as well as low-power embedded devices (IoT,
coprocessors) are particularly susceptible to buffer overflow
exploitation and often lack memory protection mechanisms.

This paper aims to address the problem of designing
shellcodes that can bypass validation filters, specifically
for RISC-V architecture in the context of text-based
applications. This will be done by introducing a new and
more generic approach to shellcoding under constraints,
inspired by code-reuse attacks, which builds the shellcode
by chaining several small reusable code snippets called
gadgets.

§This work was carried out prior to joining Amazon Web Services.

A. Our contribution

Our research presents the first analysis of utilizing emojis
as a means for writing shellcodes and a framework for
automatically generating such shellcodes in both 32 and
64-bit RISC-V architecture.

Our design relies on a multi-staged shellcode, with
the first stage written solely using emoji code sequences,
allowing for arbitrary code execution in a generic manner
by pushing the complexity onto the unpacker instead of
the payload.

Additionally, our approach differs from previous work by
utilizing a generic method inspired by code-reuse attacks
for generating low-level primitives, making the shellcodes
more resistant to signature-based detection. We include
examples of emoji shellcodes in RISC-V and an automated
tool for building them in the appendix.

I I. Background and previous work

A. Shellcodes and exploitation

In a typical arbitrary code execution (ACE) scenario,
attackers can run a short program, known as a shellcode,
to gain control of a system and execute additional programs.
This can occur through a vulnerability such as a stack-
based overflow, where an application allows writing beyond
the allocated space of an array, resulting in the overwriting
of stack frame data [1]. The shellcode is written in the array
and executed as if it were the program’s own instructions.

To be effective, shellcodes must be concise and comply
with any constraints imposed by the application. Addi-
tionally, modern protections such as Address Space Layout
Randomization (ASLR) [25], stack-smashing protection [9],
and non-executable stack space [21] make shellcode design
challenging.

Embedded and mobile devices, where protections are
often partially implemented or not at all, offer a less
restrictive environment for shellcode development. Fur-
thermore, these devices host many third-party applications
that may not adhere to secure coding practices, increasing
the risk of vulnerabilities. Previous research on constrained
shellcoding [17, 27] has mainly focused on the alphanumeric
subset. Tools to generate alphanumeric shellcodes on
the x86 platform [4] are now a standard component of
attack frameworks including Metasploit (msfvenom) and
UPX1. Three techniques are usually used: compilation,
virtualization, and packing.
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B. Compilation

Shellcode compilation uses a compiler to translate the
payload directly into a constrained target-language. When
applicable, compilation is very efficient: compilers such
as movfuscator [15, 16] and higher subleq [20] have been
provided for one instruction set computers, reduced ISA
subsets made of only one instruction. Popescu [26] released
in 2019 a compiler producing a null-free shellcode in
x86 and x64. Similarly, compile-time gadget reduction
techniques such as G-Free [23] also leverage compilation
into a constrained target language (c3-free binaries).

Furthermore, such methods often rely on syntax-directed
translation schemes, which hinders their usability in the
context of shellcoding. Indeed, our constraints lie mostly
on the operands, which cannot be expressed in the abstract
syntax recursive translation scheme without a lot of special
casing.

C. Emulation

Emulation, as used by Younan et al. for 32-bit ARMv7
alphanumeric shellcoding [30], requires the design of a
bytecode and an interpreter, both compatible with the
limited instruction set, and powerful enough to mount a
realistic attack — beyond Turing-completeness, we need
to perform system calls or other mechanisms to evade the
virtual environment. Emulation presents a huge runtime
overhead as well as a committed engineering effort.

The first automated tool using emulation was provided by
Younan et al. in 2011 for the ARMv5 platform, relying on
a BF interpreter and bytecode [31]. The technique however
does not carry over to more recent architectures such as
ARMv8.

D. Unpacking

Packing consists in splitting the exploit into a multi-
staged shellcode, where each stage unpacks the next one
before executing it. By convention, the first stage to
execute is called stage 1. Packers can provide additional
functionalities such as compression or encryption, which we
do not explore here. However, unpacking requires the ability
to execute self-modifying code, which may be hindered by
the presence of executable space protection mechanisms like
DEP [21], PaX [25] or NX-bit [19]. Moreover, self-modifying
code causes cache issues which need to be handled on a
target-specific basis.

In 2016, Barral et al. introduced the first tool capable
of compiling arbitrary ARMv8 code into alphanumeric
executable code [2], which they extended to alphanumeric
RISC-V in 2019 [3]. We decided to follow this approach
as it is conceptually simpler, much easier to check for
correctness, and well-suited to our target platform. Though,
in the context of emoji shellcoding, we now need to find a
new technique to generate the low-level primitives used in
stage 1, as the previous ones are not applicable anymore.

E. Code-reuse attacks
The introduction in 2004 of Data Execution Prevention

(DEP) [21] made straightforward code injection attacks
almost impossible, as injected data could not be executed
anymore. Instead, malware developers started using a tech-
nique reusing executable code already present in memory,
called Return-Oriented Programming (ROP). The first
ROP attack was publicly presented in 2001 by Nergal [22],
and academically studied in 2007 by Shacham [28].

ROP bypasses DEP by injecting into the stack a suc-
cession of call frames. Each call frame will result in the
execution of a gadget: a small snippet of legitimate code
containing a small number of instructions ending with a
ret. When the ret instruction is reached, the address of
the next gadget is popped from the stack into the program
counter, yielding the control flow to the next gadget in the
chain. Provided that enough different gadgets are available
in the target executable, arbitrary code may be executed
by chaining those gadgets.

JIT-spraying [6] is a technique leveraging the output of
a Just-In-Time compiler to add gadgets into the produced
executable code. The generated gadgets are then reused
through a ROP attack bypassing DEP.1

F. Unicode
Unicode is a standard aiming for a consistent encoding

and representation of written characters and text. It is the
de facto standard for most modern software stacks. For the
rest of this paper, we refer specifically to Version 14.0 [11],
published in 2021.

We summarize in the following paragraphs the main
Unicode terminology definitions used in the rest of the
paper:

Codepoint: an integer in the Unicode codespace range.
Assigned codepoints usually represent abstract characters
(an exception being UTF-16 surrogates).

Encoding Form: Codepoints being only an abstraction,
systems must have a way to represent them with bits.
This is called encoding. Unicode defines three encodings:
UTF-8, UTF-16 and UTF-32. In the following, we only
use the UTF-8 encoding (which is the most common). For
more information, we refer the reader to chapter 2.5 of the
Unicode Standard [11].

Emoji: Unicode defines in Unicode Technical Standard
#51 [12] some codepoint sequences to be emojis. These
emojis can have multiple representations. Fully-qualified
emojis and minimally-qualified emojis are meant to be
represented in a colorful and/or animated way, called
emoji presentation. Unqualified emojis are meant ot be
represented in a more ‘font-like’ way. E.g., U+2618 U+FE0F
is the fully-qualified shamrock  whereas U+2618 is the
unqualified shamrock ¨. In this work, the set of emojis is
defined to be set of fully-qualified emojis and minimally-
qualified emojis. A list of such emojis is given in [10].

1JIT-spraying also uses heap-spraying to bypass ASLR, which is
not within the scope of this paper.
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G. RISC-V

RISC-V [29] is an Instruction Set Architecture (ISA)
developed since 2010. It is based on the concept of Reduced
Instruction Set Computer (RISC) [24], targeting simplicity
by providing few, limited computer instructions. RISC
ISAs have become increasingly popular with the advent of
embedded devices such as smartphones, tablets, and other
IoT devices. RISC-V is the fifth RISC ISA published by
UC Berkeley, and it is completely free and open-source. It
features 32-bit and 64-bit little-endian variants (designated
as RV32 and RV64), with a planned extension to 128-bit.

RISC-V splits its instruction set between a mandatory
core set (RV64I ) and different optional extensions, each
designated by a capitalized string. For example, the
compressed instruction set designated with the letter C. The
general-purpose ISA, which includes IMAFDZicsrZifencei
bears the letter G. In this paper, we focus on the RV64GC
ISA, which is the one agreed upon by Debian and Fedora
developers, as well as members of the RISC-V Foundation.
Additionally, the foundation intends to provide “a profile
for standard RISC-V Unix platforms that will include C
extension as mandatory”.2

The RV64GC ISA features 32-bit and 16-bit instructions,
aligned on 16 bits. It has 31 general-purpose 64-bit registers
(x1-x31), 32 floating-point registers (f0-f31), a program
counter (pc), as well as various control-and-status registers.
The pseudo-register x0 designates the zero constant.

We adopt the terminology defined in the RISC-V
Instruction Set Manual [29] for the remainder of this
paper. Assembly instructions are written in the format
add x1,x2,x3 where add is the opcode and x1, x2, x3 are
the operands. Specifically, x1 is the destination register,
x2 is the first source register, and x3 is the second source
register. When a source register is replaced with a constant,
it is referred to as an immediate. In addition to these
conventions, we also use the slicing notation K[x : y] (where
K is a register and x < y) to denote the slice of bits from
x to y of K, with the lowest bit denoted as bit 0. We
also follow the register naming convention of RISC-V ELF
psABI [13], as shown in Table I.

Register ABI Mnemonic Meaning
x0 zero Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporary registers
x8-x9 s0-s1 Callee-saved registers
x10-x17 a0-a7 Argument registers
x18-x27 s2-s11 Callee-saved registers
x28-x31 t3-t6 Temporary registers

Table I: RISC-V register naming convention, as per
psABI [13].

2https://wiki.debian.org/RISC-V

I I I. Informal overview
The initial approach of attempting to disassemble arbi-

trary emoji sequences3 does not produce any meaningful
results, as only 10 emojis yield valid RV64GC instructions.
Even using pairs of emojis does not improve the outcome,
as the disassembler fails to find any valid executable
instructions starting at the sequence. This is due to
traditional linear disassemblers such as objdump assuming
that the first instruction starts at offset 0.

Instead, we adopt a different approach searching for
RISC-V instructions that could be part of any emoji
sequence. We refer to this subset E of RISC-V instruc-
tions as emoji-compatible. Although this approach yields
significantly more instructions than the first method, these
instructions alone cannot be used to write a shellcode as
the processor requires what comes before and after this
instruction to be valid RISC-V code.

To address this issue, we use a recursive approach. We
prepend and append other emoji-compatible instructions to
a given instruction of E, whose hexadecimal representations
when concatenated form a valid emoji sequence.

As an example, consider the emoji-compatible RV64GC
instruction auipc ra,0x979ff, whose little-endian hex-
adecimal representation is 97 F0 9F 97. Without loss of
generality, consider splitting the instruction auipc ra,0
x979ff as 97 (left part) and F0 9F 97 (right part). We then
solve independently each part, by finding emoji sequences
whose UTF-8 hexadecimal representation ends with 97
(resp. starts with F0 9F 97).

a) Solving the left part: As an example, consider
the emoji (in hex. E2 9D 97), the first two bytes,
E2 9D correspond to the RV64GC instruction add s11,s8.
Assuming that there is a solution to the second part, we
can start the executable sequence containing our auipc
instruction at the expense of trashing the s11 register.
The corresponding emoji sequence starts with .

Another possible emoji could be the emoji (in hex.
F0 9F 86 97). Unfortunately, there is no RISC-V instruction
whose last three bytes coincide with the first three bytes
of (F0 9F 86). This means that if we want to part
of our shellcode, we must jump directly to the byte 97 for
our shellcode to remain valid RISC-V code.

b) Solving the right part: The approach is similar. If
we consider the  emoji, (in hex. F0 9F 97 93 EF B8 8F), its
last four bytes correspond to the instruction ori t6,a7
,-0x705. We can end the second part with . Indeed,
there is no need to continue further, since any subsequent
emoji can be viewed as the beginning of the first part of
another instruction.

If we consider the  emoji (in hex. F0 9F 97 91 EF B8 8F),
then the first two bytes (91 EF) correspond to the instruc-
tion bnez a5,+0x1C, which is a jump forward if a5 6= 0.
Assuming that the jump is taken, we do not need to
check whether the last two bytes (B8 8F) are valid RISC-V

3Given that RISC-V instructions are at most 4 bytes and emojis at
least 3 bytes, this means that we can restrict ourselves to sequences
of only one or two emojis, greatly reducing the computation cost.

https://wiki.debian.org/RISC-V
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instructions, as they will not be executed. Besides, we limit
ourselves to forward direct jumps having an offset large
enough to jump out of the executable sequence.

As a result, the following four emojis sequences can
be built to execute our original auipc ra,0x979ff
instruction: , , , and . Depending
on the surroundings of this instruction, taking into account
whether the preceding sequence ends with a jump or not,
we may choose either of those four possibilities.

c) Assembling the sequences: The method of generat-
ing small sequences of emojis reusable in a modularly makes
the shellcode writing process similar to well-known code-
reuse techniques such as Return-oriented programming [22,
28], Jump-oriented programming [7] or JIT-spraying [6]
(which uses code-injection to write gadgets into memory).
Likewise, we reuse the term gadget to designate our
sequences. The main difference with ROP lies in the gadget
chaining method, as it now depends on whether we need
to jump into the next gadget or simply let the flow of
execution proceed.

IV. Generating gadgets

In this section, we formally describe how to generate the
emoji gadgets described in Section III.

We define our gadget as being a sequence of emojis, whose
UTF-8 representation encompasses a sequence of RISC-
V instructions. Borrowing terminology from code-reuse
attacks, we call those sequences respectively the emoji path
and the execution path.4 Generating gadgets in this context
implies finding all emoji and execution paths coinciding on
their hexadecimal representation.

We generate the gadgets with Algorithm 1 and detail it
in the next paragraphs. We remind the notation P [a : b],
denoting a slice of the array from indexes a (included) to
b (excluded). As in Python, we allow negative integers to
designate an index relative to the array’s end, and use the
absence of an integer to designate either the start or the
end of the array.

The algorithm takes as input a single RISC-V instruc-
tion,5 and splits it in all possible ways. E.g., there are
five ways to split a four-byte B0B1B2B3 instruction:
uB0B1B2B3, B0uB1B2B3, B0B1uB2B3, B0B1B2uB3, and
B0B1B2B3u. We then independently compute any possible
gadget start and end for this instruction splitting choice.
The final gadgets set is just the Cartesian product of the
sets of gadget starts and gadget ends (line 39 of Algo-
rithm 1). As gadget length can be potentially unbounded,
we add a heuristic in our implementation to limit the
gadgets’ length to at most 7 instructions.6

4In ROP or JIT-spray attacks, we overlap two executable sequences,
called the Main and the Hidden execution paths (MEP and HEP).

5Without loss of generality, we only consider 4-byte instructions of
RV64G. The process is similar for the 2-byte instructions of the C
extension.

6We exclude the initial jump for dangling-start gadgets from this
count.

Input: B0...B3, a RV64G valid instruction
Result: G, the set of all emoji RV64GC gadgets

containing B0...B3

1 Function Append(P , P ) is
// P is the emoji path
// P is the executable path

2 S = ∅
3 if NumberOfInstructionsIn(P ) > 3
4 return ∅
5 else if |P | = |P |
6 return {P }
7 else if |P | > |P |

/* expand P with any possible
emoji-compatible RISC-V instruction */

8 for I ∈ E do
// w.l.o.g.: |P | − |P | < 4

9 if I[0 : |P | − |P |] 6= P [|P | : |P |]
// I is not a valid extension of P

10 continue
11 S := S ∪Append(P , P + I)
12 return S
13 else

/* expand P with any possible emoji */
14 for E ∈ Emojis do
15 if E[0 : |P | − |P |] 6= P [|P | : |P |]

// E is not a valid extension of P

16 continue
17 if P [−1] is a jump

// We can stop extending the gadget
18 S := S ∪ {P }
19 else
20 S := S ∪Append(P + E,P )
21 return S

22 Function Prepend(P , P ) is
23 S = ∅
24 if NumberOfInstructionsIn(P ) > 3
25 return ∅
26 else if |P | = |P |
27 pass
28 else if |P | > |P |
29 for I ∈ E do
30 if I[|P | − |P | :] 6= P [: |P | − |P |]
31 continue
32 S := S ∪ Prepend(P , I + P )
33 else
34 for E ∈ Emojis do
35 if E[|P | − |P | :] 6= P [: |P | − |P |]
36 continue
37 S := S ∪ Prepend(E + P , P )
38 return S ∪ {P }

39 G :=
4⋃

i=0

Prepend([], B0..Bi−1)×Append([], Bi..B3)

Algorithm 1: Algorithm generating all emoji-gadgets.
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A. Ending the gadget (Append)
The basic idea is to extend either the emoji or the

executable path (resp. P and P ) with an emoji or a
RISC-V instruction, whichever is shorter. The only criterion
being that the chosen emoji (resp. RISC-V instruction)
must not contradict the executable path P (resp. emoji).
I.e. that the first bytes of the chosen emoji must be equal
to the last bytes of the executable path (mutatis mutandis
the chosen RISC-V instruction). This is done by line 15
(resp. 9) of Algorithm 1.

We perform the previous step recursively, cutting any
branch for which we reach a point at which there is no
possible emoji (resp. instruction) extending P .

Two additional conditions allow us to stop successfully
and return a result, either by reaching a point when P and
P both have the same size, or when the last instruction
added in P is a jump. Indeed, in the former case, we found
a point at which we can write what follows in the shellcode
independently, while in the latter case, we jump out of our
gadget, thus we can stop and leave the problem of finding
the next executable instruction to another gadget.

In code-reuse terminology, the two conditions are thor-
oughly studied under the notion of Point of Interest. In the
context of emoji gadgets, our points of interests encompass
all jumps (indirect as in ROP and direct as in JOP), and
synchronization points between the emoji and execution
paths.7 In this paper, we restrict ourselves to only direct
jumps with positive offsets to prevent spaghetti shellcode.

B. Starting the gadget (Prepend)
The gadget’s start is computed similarly by performing

the same extension operation, with the exception of
replacing all appends by prepends. The terminal conditions
are slightly different, as we now allow the gadget to start
in two ways. On top of synchronization points between
the emoji path P and execution path P , we also allow
dangling gadget starts (line 38), as another gadget may
directly jump on the first non-synchronized instruction
of the gadget. Though, a dangling start now requires the
gadget to be positioned at the right offset from the end of
the previous gadget.

C. Unclogging
When assembling gadgets, there is often a gap between

them. This typically happens for Gslti_tO (used to zero reg-
ister t0, detailed in Figure 1), which, being a dangling-start
gadget, needs another gadget to jump to the executable
part of it. Moreover, Gslti_tO ends with a small forward
jump instruction. The jump offset is typically larger than
the bytes needed to finish the emoji path, leaving undefined
byte chunks. We call such a gap clog. Figure 1 shows a clog
of size 24, and a clog of size 22.

Since clogs are part of the shellcode, they must also
have emoji representations. We call unclogging the process

7In code-reuse terminology, those are the points at which the HEP
merges into the MEP.

 

E2 9C add s9,s9,s8
85 C2 beqz a3,+0x20

A9 EF B8 8F .fill 0xa9efb88f
… .clog 0x18

 

F0 9F .fill 0xf09f
93 A2 E2 81 slti t0,t0,-2018

89 EF bnez a5,+0x1a
B8 8F .fill 0xb88f

… .clog 0x16

Figure 1: Details of gadget Gslti_tO (  ) with a preced-
ing jump gadget (  ) to account for Gslti_tO’s dangling
start

finding an emoji-representation for a given clog. Hereafter,
we provide an unclogging method (whenever possible)
using three and four-byte emojis using Bézout’s lemma.
Minimizing the number of emojis can be done with
dynamic programming, which helps reduce the length of
the shellcode, counted in characters.

Lemma 1. Let N be the set of non-negative integers. Let c
be a clog , whose size in bytes is |c|. Unclogging c is possible
if and only if |c| ∈ C = N \ {1, 2, 5}.

Proof. UTF-8 contains in particular 3 and 4-bytes emojis.
Thus, since

⋃
i,j∈N 3i + 4j = C, Bézout’s lemma gives a

trivial way to unclog c, except if |c| ∈ {1, 2, 5}.
Moreover, since no emoji has a UTF-8 representation

of 1, 2, or 5 bytes, if |c| ∈ {1, 2, 5}, then unclogging c is
impossible.

D. Available instructions

Using the gadget generation algorithm described above
on RG64GC, we get G, a set of emoji gadgets. In this
subsection, we attempt to give a concise overview of what
can be done with G. As G is too big to be humanly
searchable, we build IG , the set of instructions appearing
a least once in G, then cluster IG into different instruction
types.

Note that this approach yields an over-approximation of
the instructions one could want to use. Imagine for example
that there is a single gadget (g) containing the li a0,
42 instruction. It could be that in g, this instruction

is immediately followed by the mv a0, s1 instruction,
nullifying the effect of li a0, 42. Thus li a0, 42 is
of no use in IG .

The result of clustering IG is presented below:
1) Data processing: We list here all available instructions

which only operate on general-purpose registers.
• Register move: 76 mv (move) instructions allow to

move data between registers.
• Several addition instructions are available: add, addi,
addiw, addw. These allow to add multiple small
constants in 32-bit and 64-bit variants.

• Likewise, sub and subw (subtraction) are present.
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• The auipc (add upper immediate to program counter)
allows to read the program counter indirectly, and may
allow for position-independent shellcodes.

• Bitwise manipulation: 55 andi (bitwise AND with
immediate), 4 xor (bitwise XOR) and 3 ori (bitwise
OR with immediate), and 72 srai/srli (shift right
arithmetic/logic with immediate).

• We get no li (load immediate) instruction, but we
do have 25 lui (load upper immediate) variants.

• Set less than immediate: in both signed slti and
unsigned version sltiu, a few hundreds of them can
be found.

2) Control-flow instructions: Both conditional and un-
conditional, forward and backward jumps are available.

• We get 148 basic j (jump) instructions, and 16 jal
(jump-and-link) instructions.

• For conditional jumps, three variants are available:
beq (branch if two registers are equal, 4 of them),
beqz (branch if register is zero, 16 of them), bnez
(branch if register is not zero, 68 of them).

3) Memory processing:
• We have both lb (8-bit) and lw/lwu (32-bit) loads

as well as sw (32-bit) and sd (64-bit) stores, for a
total of 33 loads and 64 stores variants.

• A total of 1565 floating-point loads and stores (both
32-bit and 64-bit) are available. These are of little
use since we have no floating-point data processing
instructions.

4) Other instructions:
• One single control-status register manipulation instruc-

tion: csrrs ra,0xbf8,gp. It only appears in ,
and (all members of the Emoji subdivision-flag

subgroup).
5) Difference with RV32GC: The set of available gadgets

in RG32GC (denoted G32) is slightly different. We give in
appendix C an overview of the differences.

V. Shellcode construction
We will now explain how we build a shellcode from the

previously found emoji-compatible gadgets.

A. High-level overview
As hinted in section II-D, we will use unpacking. Let P

be our final payload (this is the code the attacker wants
to execute on the target).

Our shellcode high-level design is shown in Figure 2.
The unpacker U will write P into memory, then jump to
it. Contrary to [2], we do not use a main decoding loop:
the unpacker U is entirely unrolled.

B. Stage 1 design
Stage 1 assumes no initial state. Specifically, this make

the shellcode position independent. Therefore, it starts
with an initialization phase, to set-up some registers.

For example, gadget Gslti_tO presented in Figure 1 is
used twice to zero the tO register (it relies on previous

St
ag

e
1

init

Unpacker U
(embedded Penc)

nopsled

Payload
(unpacked by U)

Figure 2: High-level construction overview for our generic
emoji shellcode.

E2 9C add s9,s9,s8
85 E2 bnez a3,+0x20
99 88 .fill 0x9988

… .clog 0x1b
E2 .fill 0xe2

9E 95 add a1,a1,t2

(a) Detail of gadget Ga1++, with a jump gadget to account for
the dangling start

E2 9D add s11,s11,s8
8C E2 sd a1,0(a3)
99 8B andi a5,a5,6

(b) Detail of gadget Gstore64

E2 99 add s3,s3,s8
89 E2 bnez a3,+0x2
9E 96 add a3,a3,t2

(c) Detail of gadget Ga3++

Figure 3: Details of gadgets used in U . Register t2 is set
to 1 during initialization

gadgets to set register a3 to zero and a5 to a non-
zero value). Indeed, the only instruction which modifies
t0 is slti t0,t0,-2018. Per the RISC-V documenta-
tion [29]: “SLTI (set less than immediate) places the value
1 in register rd if register rs1 is less than the sign-extended
immediate when both are treated as signed numbers, else
0 is written to rd”. Hence, after the first call to Gslti_tO,
register t0 is either 0 or 1. Since 1 > 0 ≥ −2018, it follows
that after the second call to Gslti_tO, t0 is now equal to 0.

Once initialized, the decoder’s main body comes next.
The main body can be written with only 3 gadgets, whose
semantics are roughly the following:

• Ga1++: a1++ (see Figure 3a)
• Gstore64 : *(byte*)a3 = a1 (see Figure 3b)
• Ga3++: a3++ (see Figure 3c)
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Initialization has set a1 to 0, and a3 to the address where
we want to write the payload. We note P = P0..Pi..Pn,
with Pi being P’s i-th byte.

We then have the following algorithm to generate the
sequence of gadgets which will re-create P in the target
memory:

Input: P = P0...Pn, the payload to encode
Result: U , the unpacked, which recreates P when

run
1 Function Encode(P) is
2 a1 := 0
3 U = []
4 for i from 0 to n do
5 while a1 6= Pi do
6 U .append(Ga1++)
7 a1 = (a1 + 1) mod 256
8 U .append(Gstore64)
9 U .append(Ga3++)

10 return U

Algorithm 2: Algorithm generating U .

This approach results in quite big unpackers. Using
another set of gadgets with almost no clog, we managed
to reduce their size by a factor of up to 15. We show in
Appendix A several examples of shortened shellcodes. The
more general approach would consist in writing a three-
staged shellcode, thoroughly explored in [3].

Finally, a forward jump and/or a nopsled is added at
the end of the stage 1, so that the program counter slides
down to the beginning of the unpacked payload.

C. Polymorphism
As previously discussed, to connect gadgets with dan-

gling starts, we use small forward jumps, creating gaps
known as clogs. Section IV-C describes two unclogging
methods. This section presents an additional method to
make the shellcode partially polymorphic.

A code is considered polymorphic if it can be modified
into another code with the same functionality. In this
case, we repurpose the unclogger as a polymorphic engine,
which helps the shellcode to evade basic pattern-matching
detection methods [8]. Other specific techniques can be
used to bypass more recent intrusion detection systems [14].

The unclogger is modified to randomly select an emoji
sequence of a specified length. This allows for randomizing
a significant portion of the shellcodes: numbers are given
next to the shellcodes samples in Appendix A.

D. 32-bit RISC-V variant
In Section V-B, gadget Gstore64 is used for the unpacker.

This gadget uses the sd a1,0(a3) instruction, which is
64-bit specific, meaning that it is not available in RV32.8

Thus, we replace gadget Gstore64 by gadget Gstore32 ,
shown in Figure 4.

8Its hexadecimal encoding 0x8ce2 corresponds to the fsw fa1,0(
a3) instruction in RV32.

 

E2 99 add s3,s3,s8
8C C2 sw a1,0(a3)
A9 EF bnez a5,+0x5a
B8 8F .fill 0xb88f

… .clog 0x54

Figure 4: Details of gadget Gstore32

Unfortunately, Gstore32 is larger (62 bytes) than Gstore64
(6 bytes), resulting in slightly larger shellcodes in RV32. All
the other gadgets we used are common to both RV32 and
RV64.

VI. Evaluation
A. QEMU

We initially tested our emoji shellcodes on QEMU [5], a
widespread open-source emulator. It emulates a HiFive
Unleashed development board with RV64GC or RV32GC
cores,9 without some of its micro-architectural features
like caches or timings. The payload is expected to print
“Hello world!” on the serial device mapped at address
0x10013000. After generating the corresponding shellcodes
for both RV32IMC and RV64GC, we successfully executed
them on QEMU. We provide in Appendix A information
to easily reproduce this experiment.

B. Linux on HifiveU
Subsequently, we moved to the more realistic environ-

ment of Linux on a HiFive Unleashed board powered by a
quad-core Freedom U540 RV64GC processor. It features a
minimal busybox-based buildroot environment, for which
we created a purposely vulnerable application executing
its input data.

The first payload uses a write system call to print “Hello
world!” on the standard output. As previously, we generated
the emoji shellcode, and successfully executed it on the
vulnerable application. In addition, we successfully tested
the shellcode with two other payloads, one that spawns
a shell using the execve system call, and one that prints
on the standard output the contents of /etc/shadow file,
using the openat, read and write system calls.

Furthermore, we did not observe any cache issue, as
one could dread when using self-modifying code. This is
explained by the use of fence.i as the payload’s first
instruction synchronizing the instruction cache.

C. Bare metal ESP32C3
As a third experiment, we used an Espressif board

featuring an ESP32-C3 RV32IMC CPU. We flashed on
the board a purposely vulnerable bare-metal application
emulating a cryptocurrency wallet. Our emoji shellcode
triggers the wallet’s backup mechanism dumping the secret
key to the serial output. As previously, we generated
the emoji shellcode, and successfully executed it on the
vulnerable application, with no caching issues.

9The full emulation documentation can be found on: https://qemu.
readthedocs.io/en/v6.2.0/system/riscv/sifive_u.html

https://qemu.readthedocs.io/en/v6.2.0/system/riscv/sifive_u.html
https://qemu.readthedocs.io/en/v6.2.0/system/riscv/sifive_u.html
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VII. Conclusion
We developed a method for creating versatile, polymor-

phic RISC-V shellcodes using emoji gadgets. We utilized a
code-reuse attack strategy to generate these gadgets and
then used them to construct an unpacker for arbitrary
code execution. Additionally, we demonstrated how to
incorporate polymorphism into our shellcodes using a
modified unclogger.

As a demonstration, we provided examples of these shell-
codes on the HiFive Unleashed board running a standard
Linux operating system and created an automated tool for
building them (for both 32 and 64-bit architectures). Our
results support the effectiveness of our chosen unpacking
approach for writing shellcodes in highly restricted ISA
subsets. Future work includes exploring the potential of
extending the gadget generation algorithm to other left-
linear grammars for even more constrained shellcodes.
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Appendix
A. Hello World Shellcodes

We provide ready-to-use demo emoji shellcodes, also
available on the repository (Appendix B). They print “Hello
world!” on the serial output, when executed on QEMU
with the following command:

qemu-system-riscv64 -nographic -machine sifive_u
-device loader,addr=0x80000800,cpu-num=0
-device loader,file=shellcode.bin,addr=0x80000800

Version with only 4 gadgets for U :

Note: 14677 out of the 20090 bytes were randomized
using the polymorphic engine.

Version with more gadgets for U :

Note: 3966 out of the 5980 bytes were randomized using
the polymorphic engine.

Version heavily optimized for size in bytes:

Note: 84 out of the 1321 bytes were randomized using
the polymorphic engine.

B. Source code
The full source code used for this article is available at:

https://github.com/RischardV/emoji-shellcoding.
It contains all demos and tools used for this paper.

C. Available gagdets
Table II lists the number of different instances of

instructions found in G and G32, as defined in section IV-D.

Instruction # in G # in G32

add 89 89
addi 240 240
addiw 312 0
addw 4 0
andi 55 55
auipc 100 100
beq 4 4
beqz 16 16
bnez 68 68
csrrs 1 1
fld 624 624
flw 150 150
fsd 551 551
fsw 240 272
j 148 148
jal 16 208
lb 15 15
lui 25 25
lw 15 15
lwu 3 0
mv 76 76
ori 3 3
sd 32 0
slti 240 240
sltiu 210 210
srai 36 36
srli 39 39
sub 17 17
subw 12 0
sw 32 32
xor 4 4

Table II: Clustering of G and G32 per instruction. The first
column is the instruction mnemonic. The second (resp.
third) column give the number of different instances of the
said mnemonic found in gadget G (resp. G32)

https://github.com/RischardV/emoji-shellcoding
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