ESPwn32: Hacking with ESP32 System-on-Chips

Romain Cayre, Damien Cauquil
Who are we?

Romain Cayre, EURECOM
- maintainer of *Mirage*, a popular BLE swiss-army tool
- loves *cross-protocol attacks* (*Wazabee*)

Damien Cauquil, Quarkslab
- maintainer of *Btlejack*, another BLE swiss-army tool
- loves reversing stuff, including *embedded systems*
Introduction
Enter the ESP32 world!

- **Cheap** and **lightweight** SoCs
- Commonly used for **IoT devices**
- Provides **WiFi, Bluetooth Low Energy / Bluetooth BR/EDR**
- **Tensilica Xtensa** (ESP32, ESP32-S3) and **RISC-V** (ESP-C3)
Lots of questions ...

Is it possible to:

- **sniff** BLE communications?
- **inject** an arbitrary BLE PDU?
- **divert the radio PHY** to do *nasty* things?
- support **other wireless protocols**?
- turn any ESP32 into a **wireless hacking tool**?
ESP32 internals
ESP32 Internal ROMs

- 2 specific **ROM** regions
- These regions contain some **code and data**
- **Low-level API functions** to drive the BLE core
- **Problem**: how to hook these functions?
Hooking ROM functions

- ROM functions are called through `r_ip_funcs_p`
- `r_ip_funcs_p` is a table of function pointers in RAM

```
400ea86a 41 df e8    l32r    a4,->r_ip_funcs_p
400ea86d 48 04    l32i.n    a4==r_ip_funcs_p,a4,0x0
400ea86f 42 d4 0a    addmi    a4,a4,0xa00
400ea872 42 24 2f    l32i    a4,a4,0xbc
400ea875 e0 04 00    callx8    a4
```
PDU sniffing & injection

- `r_lld_pdu_rx_handler()`: called whenever a PDU is received
- `r_lld_pdu_data_tx_push()`: used to send a PDU
LL_VERSION_IND injection
Remote BLE stack fingerprinting!
Hacking the physical layer
Can ESP32 radio be diverted to interact with other protocols?

- BLE uses **Gaussian Frequency Shift Keying** (GFSK) modulation...
- ... like dozens of weak proprietary protocols! (ANT, Riitek, MosArt, Logitech Unifying, Microsoft...)
- **WazaBee**: equivalence between O-QPSK (802.15.4) and 2Mbps GFSK (BLE 2M) → **ESP32-S3 / ESP32-C3** only
Cross-protocol attacks

We control the following low level radio parameters:

- CRC verification
- frequency
- datarate
- synchronization word
- whitening / dewhitenning
- input and output bitstreams
 Arbitrary reception primitive

Hook `r_llm_start_scan_en()` and modify RF parameters:

- force a specific frequency and disable channel hopping,
- divert access address as a synchronization word,
- force datarate,
- configure test format,
- disable whitening and CRC.

Reuse `r_lld_pdu_rx_handler()` hook to extract packets.
Arbitrary transmission primitive

- Hook **r_lld_pdu_tx_push** and modify RF parameters,
- Find the **TX buffer** in memory and write a packet (PIP attack),
- Start radio in **TX test mode**.
Demo time!
Transmitting arbitrary signals
Low level RF functions are stored in a specific function pointers array: `g_phyFuns`.

- We can reuse the same hooking technique.
Calibration process

Imperfections corrected using **digital calibration technique**: Loopback between TX and RX path to estimate and compensate I/Q mismatch.
Diverting calibration process

- Disable HW frequency control (phy_dis_hw_set_freq).
- Infinite loop when rom_loopback_mode_en is called.
- Call low level functions to control frequency and gain.
WiFi Jamming

Jamming disabled

Jamming enabled
while (jammer) {
 // Set frequency to 2402 MHz (channel 37)
 set_chan_freq_sw_start(2, 0, 0);
 // Alter the parameters
 ram_start_tx_tone(1, 0, 10, 0, 0);

 // Set frequency to 2426 MHz (channel 38)
 set_chan_freq_sw_start(28, 0, 0);
 ram_start_tx_tone(1, 0, 10, 0, 0)

 // Set frequency to 2480 MHz (channel 39)
 set_chan_freq_sw_start(80, 0, 0);
 ram_start_tx_tone(1, 0, 10, 0, 0);
}
• ESP32 BLE stack can be repurposed to perform:
 ○ on the fly BLE PDU monitoring, modification & injection,
 ○ cross-protocol eavesdropping & injection,
 ○ jam multiple channels and establish a covert channel.

• Risks related to the coexistence of wireless protocols:
 ○ Attacker can leverage similarities in the physical layer,
 ○ no security or security by obscurity
 ○ large deployment of BLE devices → new attack surface
Q/A time
Thank you!