
Scripted Henchmen: 
Leveraging XS-Leaks for 
Cross-Site Vulnerability 

Detection

Tom Van Goethem, Iskander Sanchez-Rola, Wouter Joosen



It's hard being a cybercriminal

● Finding vulnerable sites & services takes resources 
(computing, network, ...)
○ Cybercrime needs to be profitable

● Repeated attacks on target might cause IP bans
○ Might require switching servers from time to time → 

additional operational cost

● Sites might protect themselves with cloud security 
solution
○ Known to rely on IP reputation

2



Get someone else to do your dirty work

● We can leverage the resources of regular users
○ Saves cost of renting those resources
○ Every "henchman" has a unique IP address
○ Attacks originate from residential networks (= trustworthy)

● Common practice in typical botnets
○ Attacker compromises host, and then this zombie would 

start attacking other hosts

● Can we also abuse website visitors to detect 
vulnerabilities in other sites?

ATTACK!

3



Dealing with the browser police/policies

● If we want unwitting visitors to attack other websites, we 
need to send cross-site requests

● However, the same-origin policy prevents us to read out 
their responses
○ Can't detect whether vulnerability is present

● In this presentation, we circumvent this in three ways
○ Abusing site's CORS configuration
○ Leveraging web rehosting services
○ Exploiting XS-Leak vulnerabilities in the browser

4



It's no break in if the door is open

● Some sites set Access-Control-Allow-Origin: * 
response header

● Allows any other site to read out the response to 
unauthenticated requests

● 265,232 sites (2.11%) set the header on the homepage 
(based on HTTP Archive dataset)

● More common on top sites (9.09% of top 1k)

body = await fetch(`https://example.com/?param=<script src="//atk.com/"></script>`);
doc = parser.parseFromString(body, 'text/html');
doc.querySelector('script[src="//atk.com/"]');

5



Hide your face when robbing a bank

● Attacker uses the third-party “rehosting” service to 
become same-origin to victim

● Example: attacking page includes 2 "translated" iframes
○ One with the target page with attacker's payload
○ One with malicious JavaScript
○ Both are same origin, so attacker can read out response

● Tested 14 rehosting services1, 11 are susceptible
○ Some required bypasses of defenses they implemented
○ See paper for all the goodies victim

translate.com translate.com

1: list based on prior work by Watanabe et al. (Compromising the intermediary web services that rehost websites; NDSS'20) 6



The third henchman walks in

● Prior two techniques rely on
○ specific configuration of the targeted website
○ presence of third-party web applications

● Side-channel attacks could help the attacker!

● Browsers are known to be susceptible to various 
XS-Leaks that leak specific information about cross-site 
resources

● How do we leverage these to detect vulnerabilities in 
other (cross-origin) websites?

7



Don't dare to mess with XS-Leaks

● XS-Leaks are mostly known to infer user state from 
other sites

● Here, we use them to infer information about resources

● Can be used to infer various information
○ Response size (e.g. based on timing attacks)
○ Response status (e.g. 200 vs 500)
○ Response content & operations (e.g. number of iframes, 

or postMessage() calls)

● Found two novel XS-Leak technique during research
○ Presence of subresources & CDN cache status 

(see paper for details)

8



Every job is unique

● We explored how to leverage XS-Leaks to detect common 
web vulnerabilities in a cross-site context
○ XSS, SQL injection, login bruteforce & server-side request 

forgery

● Each vulnerability requires a different technique because 
different type of response needs to be observed

● We found at least one technique that works for every type 
of vulnerability

9



Detecting XSS through XS-Leaks #1: postMessage

● Payload tries to inject script that postMessage()s 
top or window.opener

● When the attacker page receives a message, it knows 
the attack succeeded, and the page is vulnerable

● Can be iframe-based (completely hidden to the user), 
or by opening new window (requires user interaction)
○ X-Frame-Options on target page would prevent 

iframe-based attack

10



Detecting XSS through XS-Leaks #2: frames

● Payload contains many <iframe> elements

● Attacker can read out {frame,window}.length

● High value indicates that injected payload was not 
properly sanitized or escaped
○ Likely that page is vulnerable to XSS
○ Still requires verification (either via postMessage 

technique or manually by attacker)

● Similarly, technique can be executed via iframes or 
windows

11



Detecting XSS through XS-Leaks #3: prerender

● Chromium-based browsers support
<link rel="prerender" href="...">
○ Preloads resources (e.g. images) on target page

● Payload can include <img src="//cdn-host/img">

● If payload is reflected without sanitization, the (unique) 
image will be requested and cached by CDN

● Finally, attacker uses novel CDN cache status
detection method
○ Requires host that sets ACAO + ACEH headers (we found 44k)
○ Timeless timing attack can be used more generally

12



(Almost) no one can hold you back

● Vulnerability detection success depends on defenses 
deployed by the target website & those in the browser

CORB CORP COOP SameSite CSP framing 
protection Overall

postMessage() 
iframe - - - - 0.17% 24.24% 24.30%

postMessage() 
window - - 0.16% - 0.17% - 0.34%

frames.length
iframe - - - - - 24.24% 24.24%

frames.length
window - - 0.16% - - - 0.16%

Prerender - - - - 0.61% - 0.61%
13



Conclusion

● Multiple ways to bypass browser's SOP and
perform cross-site vulnerability detection attacks
○ CORS configuration
○ Abusing rehosting services
○ Leveraging XS-Leaks

● Each vulnerability type requires different
XS-Leak technique
○ Multiple options are available

● Current deployment of defenses is mostly
ineffective against vuln detection attacks

: @tomvangoethem

: tom.vangoethem@kuleuven.be


