
SRLabs Template v12

ASanity: On Bug Shadowing by Early ASan Exits

Vincent Ulitzsch vincent@sect.tu-berlin.de
Deniz Scholz deniz.scholz@t-online.de

Dominik Maier dmaier@sect.tu-berlin.de

mailto:vincent@sect.tu-berlin.de
mailto:deniz.scholz@t-online.de
mailto:dmaier@sect.tu-berlin.de

Summary

2

1 Fuzzers add compile-time instrumentation sanitizers to enhance their bug capabilities.

2
AddressSanitizer identifies illegitimate memory accesses, but aborts program execution after the
first bug.

3 ASan’s early exits can hide bugs, as we show through a large-scale study.

Fuzz-testing relies on detecting crashing test cases

3

Seeds Target
Program

Seed the fuzzing engine with
valid program input

a
Fuzzing engine observes

behavior and saves
interesting testcases, e.g.,

crashing inputs

c

Fuzzing engine takes some
program input, mutates it,
runs it against the target

b

Add inputs that yield new
coverage to input queue

d

Fuzzing engine

Mutate + run testcase

Interesting
cases

Observe behaviour

c

ba

New
coverage

d Sanitizers help
with detecting
bug-triggering
inputs!

AddressSanitizer helps to analyze crashes

4

==3955==ERROR: AddressSanitizer:
heap-buffer-overflow on address
0x6100000001f5 at pc 0x5558ca920c3e bp
0x7ffd85b1b390 sp 0x7ffd85b1ab40
READ of size 16 at 0x6100000001f5 thread
T0

#0 0x5558ca920c3d in
__interceptor_memcpy.part.0

#1 0x5558ca966533 in swap
#2 0x5558ca96082a in __libc_start_main

AddressSanitizer output gives information about
the cause of the bug

void swap(char *left, char *right, int
len) {

//Call with len=size(right)
char tmp[len];
// Potential OOB read if

len>size(left)
memcpy(tmp, left, len);
[…]

}

ASan adds instrumentation during compile time to detect memory corruption errors during runtime.
Gives information about crash-type, access type and byte-size of the violation.

Vulnerable Program

ASan’s early exit behavior can hide bugs

5

void swap(char *left, char *right, int len)
{

char tmp[len];
// Potential OOB read
memcpy(tmp, left, len);
// OOB write shadowed by early exit
memcpy(left, right, len);
memcpy(right, tmp, len);

}

ASan aborts program
execution here

▪ ASan – by default – aborts program execution early (on the first bug).

▪ This can hide bugs later in the program flow.

▪ But: This behavior can be disabled via a compiler flag.

Vulnerable Program

And thus misses a more
severe bug here

ASan’s early exits could lead to wrong bug prioritization

6

• ASan‘s output is used to assign severities, and thus, priorities in large-scale fuzzing campaigns.

• An underestimated severity can lead to lower priority.

• Or worse: Once the out-of-bounds read is fixed, the testcase might not trigger the out-of-bounds write
anymore – the bug will be missed!

Research Question

7

Do ASan early exits impact our bug-finding capabilities in practice?

Large Scale Study: Based On OSS-Fuzz

8

Clusterfuzz

Submit project + harness to OSS-Fuzz repository1

2

Pull project + fuzz

Monorail Issue Tracker
Developer

Report bug + testcase to developer

3

4

OSS-Fuzz

• OSS-Fuzz: Framework for continuously fuzzing open-source projects in ClusterFuzz, distributed fuzzing
environment.

• Focus on heap buffer overflow out-of-bounds Read (OOB-R) issues:

• RQ: Do the testcases also trigger an OOB-Write or use-after-free?

Monorail gives us detailed information about a bug

9

Monorail
output gives
crash type

And assign severities

Experiment Design

10

Scrape Monorail
bugtracker issues

1
Filter for heap

OOB-reads

2
Recompile

harness, early
exists disabled

3
Re-execute

triggering input

4

Collect results

5

▪ Received data
for 44k issues,
spanning
around ~500
projects

▪ Based on
scraper by Ding.
et. al. in 2021

▪ 1986 OOB-read
issues, 1788
reproducible

▪ Could recompile
814 examples,
spanning 159
projects

▪ 5% of the issues
trigger a more
severe bug!

Resulting Data

11

• For 23/159 projects: At least one testcase also triggers a use-after-
free or heap OOB-W

• 19/159 projects: At least one testcase additionally triggered
an OOB-W

• 8/159 projects: At least one testcase additionally triggered a
use-after-free

• In total almost 5% (38/814) heap OOB-R issues also triggered an
OOB-W or use-after-free

• Detailed listing also in the paper

Case Study: Two bugs in the wasm3 interpreter (1/2)

12

M3Result InitDataSegments (M3Memory * io_memory, IM3Module io_module)
{

[...]
i64 segmentOffset;
//Read segmentOffset from wasm file
if ((size_t)(segmentOffset) + segment->size <= io_memory->mallocated->length)

u8 * dest = m3MemData (io_memory->mallocated) + segmentOffset;
memcpy (dest, segment->data, segment->size); //OOB-R here

}
}

• We conducted case study on the wasm3 interpreter – issue reported as a heap-buffer OOB-R

• Fix will abort execution in case of OOB-R

M3Result ParseSection_Data (M3Module * io_module, [...]) {
[...]
//Segment size is attacker controlled
segment->data += segment->size;
//Fix: _throwif("", segment->data > segment_end);
[...]

}

Case Study: Two bugs in the wasm3 interpreter (2/2)

13

M3Result InitDataSegments (M3Memory * io_memory, IM3Module io_module)
{

[...]
i64 segmentOffset;
//Read segmentOffset from wasm file
if ((size_t)(segmentOffset) + segment->size <= io_memory->mallocated->length)

u8 * dest = m3MemData (io_memory->mallocated) + segmentOffset;
memcpy (dest, segment->data, segment->size); //OOB-R and OOB-W here

}
}

Integer overflow
allows us to write
into the dest pointer

The OOB-W is
shadowed by the
OOB-R in the same
line.

▪ The OOB-R shadowed an OOB-W in the InitDataSegments section

▪ When fixed, our testcase will not trigger the OOB-W anymore: Bug could
remain hidden!

▪ Paper: We show how to exploit the OOB-W for code execution

Conclusion

14

1 ASan’s early-exits indeed shadow more severe bugs.

2 5% of OSS-fuzz testcases also triggered more severe bug.

3 Further fuzzing campaigns should consider disabling ASan’s early-exits.

Thank you for your attention!

vincent@sect.tu-berlin.de
https://github.com/fgsect/asanity

