Divergent Representations:
When Compiler Optimizations Enable Exploitation

Andreas D. Kellas*, Alan Cao', Peter Goodman', Junfeng Yang*
*Columbia University, TTrail of Bits

*{andreas.kellas, junfeng}@cs.columbia.edu, Halan.cao, peter}@trailofbits.com

Divergent Representations: Key Takeaways

Can compiler optimizations enable exploitation of existing vulnerabilities?

Divergent Representations: Key Takeaways

Can compiler optimizations enable exploitation of existing vulnerabilities?

We discovered “divergent representations”.

Divergent Representations: Key Takeaways

Can compiler optimizations enable exploitation of existing vulnerabilities?

We discovered “divergent representations”.

Enable exploitation of real software: e.g., SQLite.

Divergent Representations: Key Takeaways

Can compiler optimizations enable exploitation of existing vulnerabilities?
We discovered “divergent representations”.
Enable exploitation of real software: e.g., SQLite.

Common: 45% of scanned projects.

Divergent Representation: Definition

A source code variable compiled so that some of its uses have
different semantic representations.

Divergent Representation: Definition

A source code variable compiled so that some of its uses have
different semantic representations.

int 1i;
for (1=0; buf[i] != ch; i++) {}
return 1i;

Divergent Representation: Definition

A source code variable compiled so that some of its uses have
different semantic representations.

int 1i;
for (i=0; buf[i] !'= ch; i++) {}
return 1i;

Clang14 -O1

mov eax, -1; | add eax, 1;
lea rcx, [rdi + 1];

mov rdi, rcx;
jne

cmp byte ptr [rdi], sil;

ret;

Divergent Representation: Definition

A source code variable compiled so that some of its uses have
different semantic representations.

int 1i;
for (i=0; buf[i] !'= ch; i++) {}
return 1i;

Clang14 -O1

mov eax, -1; | add eax, 1;
lea rcx, [rdi + 1];

mov rdi, rcx;
jne

cmp byte ptr [rdi], sil;

32-bit

ret;

Divergent Representation: Definition

A source code variable compiled so that some of its uses have
different semantic representations.

int 1i;
for (i=0; bufl[i] !'= ch; i++) {}
return 1i;

Clang14 -O1

mov eax, -1; | add eax, 1;

lea rcx, [xrdi + 11];

cmp byte ptr [xrdi], sil;
mov rdi, rcx;

jne

32-bit
64-bit

ret;

10

Divergent Representation: Definition

A source code variable compiled so that some of its uses have

different semantic representations.

int 1i; . T
o (o=05 BuEl [= oo Aes) 4 If 1 overflows: divergent values
return 1i;

Clang14 -O1 mov eax, -1; F——| add eax, 1; 32-bit
lea rcx, [xdil + 11]; 64-bit
cmp byte ptr [xrdi], sil;
mov rdi, rcx;
jne ret;

11

Previous work [1,2] showed:
compiler optimizations + undefined behavior = unexpected vulnerabilities

[1] Wang et al., “Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior”, SOSP, 2013.
[2] D'Silva et al., “The Correctness-Security Gap in Compiler Optimization”, IEEE S&P, 2015.

12

Previous work [1,2] showed:
compiler optimizations + undefined behavior = unexpected vulnerabilities

if (buf + 1 < buf) struct tun struct *tun = ...;
return; struct sock *sk = tun->sk;
buf[i] = “\0’; if (!tun)

return POLLERR;

[1] Wang et al., “Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior”, SOSP, 2013.
[2] D'Silva et al., “The Correctness-Security Gap in Compiler Optimization”, IEEE S&P, 2015.

Previous work [1,2] showed:
compiler optimizations + undefined behavior = unexpected vulnerabilities

if (buf + 1 < buf) struct tun struct *tun = ...;

return; struct sock *sk = tun->sk;
buf[i] = “\0’; if (!tun)

|_—" return POLLERR;

True iff undefined behavior occurs.

[1] Wang et al., “Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior”, SOSP, 2013.
[2] D'Silva et al., “The Correctness-Security Gap in Compiler Optimization”, IEEE S&P, 2015.

Previous work [1,2] showed:
compiler optimizations + undefined behavior = unexpected vulnerabilities

F—+—+ oavw) struct tun struct *tun = ...;

ettt struct sock *sk = tun->sk;
buf[i] = “\0’; —F— =)
/ 1 DATTTIDD
LT CULIL L ULl ININ,

True iff undefined behavior occurs.

[1] Wang et al., “Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior”, SOSP, 2013.
[2] D'Silva et al., “The Correctness-Security Gap in Compiler Optimization”, IEEE S&P, 2015.

15

This work: benign patterns in compiled code to exploit existing vulnerabilities.

16

This work: benign patterns in compiled code to exploit existing vulnerabilities.

Similar to ROP gadgets.

17

Case Study: SQLite CVE-2022-35737

Vulnerability (7.5 CVSS): signed integer overflow creates stack buffer overflow.

18

Case Study: SQLite CVE-2022-35737

Vulnerability (7.5 CVSS): signed integer overflow creates stack buffer overflow.

Exploit: overwrite saved return address and return.

19

Case Study: SQLite CVE-2022-35737

Vulnerability (7.5 CVSS): signed integer overflow creates stack buffer overflow.

Exploit: overwrite saved return address and return.
- Requires precise data conditions.

20

Case Study: SQLite CVE-2022-35737

Vulnerability (7.5 CVSS): signed integer overflow creates stack buffer overflow.

Exploit: overwrite saved return address and return.
- Requires precise data conditions.

Conditions only satisfiable because of a divergent representation.

21

Case Study: SQLite divrep helps exploit buffer overflow

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len] != *\0’; len++) {
if (input[len] == quote) nquotes++;
while (unicode prefix(input[len])) len++;

}

if (len + nquotes <= BUF SIZE)
memcpy and escape (output, input, len);

Case Study: SQLite divrep helps exploit buffer overflow

1.

Scan input string: count quotes and
total number of bytes.

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len] != *\0’; len++) {
if (input[len] == quote) nquotes++;
while (unicode prefix(input[len])) len++;

}

if (len + nquotes <= BUF SIZE)
memcpy and escape (output, input, len);

23

Scan input string: count quotes and
total number of bytes.

Check: output string fits in
stack-allocated buffer.

Case Study: SQLite divrep helps exploit buffer overflow

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len]

}

if (len + nquotes <= BUF SIZE)

memcpy and escape (output,

| = \\OI;
if (input[len] == quote)
while (unicode prefix(input[len]))

nquotes++;

Scan input string: count quotes and
total number of bytes.

Check: output string fits in
stack-allocated buffer.
- CAN OVERFLOW

Case Study: SQLite divrep helps exploit buffer overflow

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len]

}

if (len + nquotes <= BUF SIZE)

memcpy and escape (output,

| = \\OI;
if (input[len] == quote)
while (unicode prefix(input[len]))

nquotes++;

Case Study: SQLite divrep helps exploit buffer overflow

1. Scan input string: count quotes and
total number of bytes.

2. Check: output string fits in
stack-allocated buffer.
- CAN OVERFLOW

3. Copy: input string to stack-allocated
buffer, add escape characters.

int len, nspecial;
char output [BUF SIZE];

(i=0; input[len] != ‘\O0’;
if (input[len] == quote)

len++) {
nquotes++;

for

while (unicode prefix(input[len])) len++;
}
if (len + ngquotes <= BUF SIZE)

memcpy and escape (output, input, len);

26

Case Study: SQLite divrep helps exploit buffer overflow

1. Scan input string: count quotes and
total number of bytes.

2. Check: output string fits in
stack-allocated buffer.
- CAN OVERFLOW

3. Copy: input string to stack-allocated
buffer, add escape characters.
- STACK BUFFER OVERFLOW

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len] != *\0’; len++) {

if (input[len] == quote) nquotes++;

while (unicode prefix(input[len])) len++;
}
if (len + ngquotes <= BUF SIZE)

memcpy and escape (output, input, len);

27

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nguotes must overflow
len must be small during memcpy

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len] != ‘\0’; len++) {

if (input[len] == quote) nquotes++;

while (unicode prefix(input[len])) len++;
}
if (len + ngquotes <= BUF SIZE)

memcpy and escape (output, input, len);

28

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nguotes must overflow
len must be small during memcpy

int len, nspecial;
char output [BUF SIZE];

for (i=0; input[len] != *\0’; len++) {

if (input[len] == quote) nquotes++;

while (unicode prefix(input[len])) len++;
}
if (len + ngquotes <= BUF SIZE)

memcpy and escape (output, input, len);

29

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nguotes must overflow
len must be small during memcpy

int len, nspecial;
char output [BUF SIZE];

Problem: 1len < nquotes —
len must overflow —
negative memory index.

for (i=0; input[len] != *\0’; len++) {

if (input[len] == quote) nquotes++;

while (unicode prefix(input[len])) len++;
}
if (len + ngquotes <= BUF SIZE)

memcpy and escape (output, input, len);

30

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nguotes must overflow
len must be small during memcpy

Problem: 1len < nquotes —
len must overflow —
negative memory index.

int len, nspecial; 32-bit
-pI
char output [BUF SIZE]; .
put [BUF_SIZE] b4-bit

for (i=0; input[len] != *\0’; len++) {

if (input[len] == quote) nquotes++;
while (unicode prefix(input[len])) len++f

}

if

(len + nguotes <= BUF SIZE)

memcpy and escape (output,

input, len);

31

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nguotes must overflow
len must be small during memcpy

Problem: 1len < nquotes —
len must overflow —
negative memory index.

Key insight: increment 1en with different
semantics to meet conditions.

int len, nspecial; 32-bit
-bl
char output [BUF SIZE]; .
puE [EDR_Buam] b4-bit
for (i=0; input[len] != *\0’; len++) {
if (input[len] == quote) nquotes++;
while (unicode prefix(input[len])) len++f
}
if (len + ngquotes <= BUF SIZE)
memcpy and escape (output, input, len);

32

Case Study: SQLite divrep helps exploit buffer overflow

Exploit conditions:
len + nquotes must overflow
len must be small during memcpy

Problem: 1len < nquotes —
len must overflow —
negative memory index.

Key insight: increment 1en with different
semantics to meet conditions.

E.g., avoid negative memory offsets by
using unicode characters to increment

len with 64-bit semantics whenever a

32-bit value is undesirable.

int len, nspecial; 32-bit
char output[BUF SIZE]; .
P = 64-bit
for (i=0; input[len] != *\0’; len++) {
if (input[len] == quote) nquotes++;
while (unicode prefix(input[len])) len++f
}
if (len + ngquotes <= BUF SIZE)
memcpy and escape (output, input, len);
input Ox7FFFFFFF
D A A S S I I R I T A A N I I I I I I PP
T R A A e T A R R A Y v+ |
a|\o|

33

Case Study: SQLite divrep helps exploit buffer overflow

(gdb) info frame
Stack level 0, frame at Ox7ffd3b5468b0O:

rip = 0x7fla2c35ff09 in sqlite3 str vappendf (sqlite3.c:27504);
saved rip = Oxdeadbeefdeadbeef

*Canaries not considered.
34

Divergent Representations: How common are they?

35

Divergent Representations: How common are they?

Source code search - C/C++

CodeQL queries for patterns that may be optimized with integer widening.

36

Divergent Representations: How common are they?

Source code search - C/C++

CodeQL queries for patterns that may be optimized with integer widening.

Binary code search

Binary Ninja plugins to identify instances of different register sizes and
semantics for same variable.

37

Divergent Representations: How common are they?

Source code search - C/C++

CodeQL queries for patterns that may be optimized with integer widening.

Binary code search

Binary Ninja plugins to identify instances of different register sizes and
semantics for same variable.

Counts are under-approximations: other forms of divergent representations may

exist.
38

Distribution of Source Code Divergent
Representation Candidates

v
(=]
o

£y
(=]
o

300

200

Number of repositories

100 - 102

12 2
== .
0 1-9 10-99 100-199 200+

No. of div. rep. candidates found in a repository (inclusive)

0_

Distribution of Source Code Divergent
Representation Candidates

v
(=]
o

£y
(=]
o

45%
300

200

Number of repositories

102

12
. === 2

0 1-9 10-99 100-199 200+
No. of div. rep. candidates found in a repository (inclusive)

100

0_

Distribution of Source Code Divergent
Representation Candidates

600 -
g 500-
|
(o]
wjd
@ 400+
o
o 45%
« 300
| .
Q
2
£ 200 -
=
2
100 - 202 11%
0- i :
0 1-9 [0-99 100-199 200+

No. of div. rep. candidates found in a repository (inclusive)

libsqglite3.so: # of divergent representations in compiled program

Optimization
Level

-O0

-O1

-0O2

-O3

Clang GCC
0 0

23 33
26 37
30 53

42

Divergent Representations: Can they be prevented?

43

Divergent Representations: Can they be prevented?

Disable optimizations?

44

Divergent Representations: Can they be prevented?

Disable optimizations?

- Unsatisfying: we want performant programs.

45

Divergent Representations: Can they be prevented?

Disable optimizations?
- Unsatisfying: we want performant programs.

Optimizations should be correct, performant

46

Divergent Representations: Can they be prevented?

Disable optimizations?
- Unsatisfying: we want performant programs.

Optimizations should be correct, performant, and not aid attackers.

47

Divergent Representations: Can they be prevented?

Disable optimizations?

- Unsatisfying: we want performant programs.

Optimizations should be correct, performant, and not aid attackers

int 1i;
for (1i=0;
return 1i;

buf[i]

el g

i++)

{}

B i
for (1=0;
return 1i;

buf[1i]

!= ch;

i4++)

{}

48

Divergent Representations: Can they be prevented?

Disable optimizations?

- Unsatisfying: we want performant programs.

Optimizations should be correct, performant, and not aid attackers

int 1i;
for (1=0; buf[i] != ch;
return 1i;

i++)

{}

B i
for (1=0;
return 1i;

buf[1i]

!= ch;

i4++)

{}

Our tools should reason about divergent representations:

- Source code: linters
- Binary: decompilers

Divergent Representations: Summary

A source code variable compiled so that some of its uses have
different semantic representations.

50

Divergent Representations: Summary

A source code variable compiled so that some of its uses have
different semantic representations.
- Enable exploits: e.g., SQLite

- Common: 45% of C/C++ projects

51

Divergent Representations: Summary

A source code variable compiled so that some of its uses have

different semantic representations.
- Enable exploits: e.g., SQLite

- Common: 45% of C/C++ projects

Benign in isolation, but dangerous with a vulnerability.

52

Divergent Representations: Summary

A source code variable compiled so that some of its uses have

different semantic representations.
- Enable exploits: e.g., SQLite

- Common: 45% of C/C++ projects

Benign in isolation, but dangerous with a vulnerability.
- Must understand causes and risks.
- Ought to prevent when acceptable.

53

