
Florida Institute for Cybersecurity (FICS) Research

From Blue Boxes to Black Boxes:
Adventures in Uncovering

Mobile Device Functionality

Kevin Butler

WOOT 2023
San Francisco, CA

May 25, 2023

*

1

Florida Institute for Cybersecurity (FICS) Research

Phone Phreaking

2

Florida Institute for Cybersecurity (FICS) Research

Blue Boxes

Credit: Maksym Kozlenko. Creative Commons
Credit: Joe Melena. ©Apple Computer

3

Florida Institute for Cybersecurity (FICS) Research

Why Telco?
• One of history’s most important advances in

human communication but very little
information accessible about these networks

• In-band signal tones only became known
through inadvertent disclosure in a Bell
Systems journal

• Modern day telephony shares some of this
obscurity, but complexity has also moved to
the edge

• How do we uncover this functionality?
4

Florida Institute for Cybersecurity (FICS) Research 5

AT Commands

Florida Institute for Cybersecurity (FICS) Research 6

AT Commands

Florida Institute for Cybersecurity (FICS) Research 7

AT Commands

Florida Institute for Cybersecurity (FICS) Research

Prevalence of AT Commands
AT commands aren’t new

Previous work on smartphones shows that
a select few AT commands have an
impact

8

• But we had little idea…

• How many commands exist?

• What their security impact is?

• What the commands do?

Florida Institute for Cybersecurity (FICS) Research

Analysis Pipeline

9

11 Vendors
3,500 AT

Commands

17+ Tools2,018 Images

Florida Institute for Cybersecurity (FICS) Research

Firmware Extraction
Image files are usually ZIPs, but

some vendors have strange
formats

No standard firmware
distribution format and no
tool that can extract all
formats!

Time to write our own omnibus
extractor from scratch

1
0

foreach (firmware)
Recursively extract() using vendor or

standard tools until the raw files of the
Android system image are exposed

foreach (file)
if (file) is an APK or ODEX, decompile()

it to Java source or Smali bytecode
run(strings) on the binary file or

source code
grep() strings for AT command regex

Algorithm

Florida Institute for Cybersecurity (FICS) Research

Filtering
Once we have a raw list of AT command from each image, time to filter

Apply a stronger AT regex and some heuristics

1
1

1,392,871 Raw Grep Matches

930,437 Raw Grep Matches

4,654 Unique AT Commands

strong regex

deduplication

3,500 Unique AT Commands

heuristic

Florida Institute for Cybersecurity (FICS) Research

Attack Vector: Modem Interface
Your phone may expose a “modem

interface” over USB, aka CDC ACM
device

Commands flow from the USB port to a
listening native daemon and either go to
the modem or the Android system

They are multiplexed differently per-
vendor

Some phones have a “hidden” modem
configuration that can be activated
externally with usbswitcher

12

Florida Institute for Cybersecurity (FICS) Research

Logs returned

• Lots of hints to functionality and possible
security impact

Triaging the Results

13

Florida Institute for Cybersecurity (FICS) Research

Logs returned

• Lots of hints to functionality and possible
security impact

Phone Side-effect

• Menu pops up, WiFi disappears, etc.

• Phone reboots, factory resets itself

Triaging the Results

14

Florida Institute for Cybersecurity (FICS) Research

Logs returned

• Lots of hints to functionality and possible
security impact

Phone Side-effect

• Menu pops up, WiFi disappears, etc.

• Phone reboots, factory resets itself

No obvious effect

• Many commands return “OK” or “ERROR”

• Use IDA Pro to disassemble the AT
command distributors

• read the assembly source

Triaging the Results

15

Florida Institute for Cybersecurity (FICS) Research

Logs returned

• Lots of hints to functionality and possible
security impact

Phone Side-effect

• Menu pops up, WiFi disappears, etc.

• Phone reboots, factory resets itself

No obvious effect

• Many commands return “OK” or “ERROR”

• Use IDA Pro to disassemble the AT
command distributors

• read the assembly source

Triaging the Results

16

Florida Institute for Cybersecurity (FICS) Research

Sensitive Information Leaking
Path traversal vulnerability

found in
AT%PROCCAT and
AT%SYSCAT
commands

Allows reading of entire
SDCard!

IMEI and plenty of other
information can be
leaked from your phone

12

Florida Institute for Cybersecurity (FICS) Research

Android Security Bypassing
Make Calls

ATD3521174567

Enable USB debugging (LG)

AT%USB=adb

Bypass the lock screen (LG)

AT%KEYLOCK=0

Inject Touch Events

AT+CTSA=EVENT,X,Y

19

Florida Institute for Cybersecurity (FICS) Research

Android Security Bypassing
Make Calls

ATD3521174567

Enable USB debugging (LG)

AT%USB=adb

Bypass the lock screen (LG)

AT%KEYLOCK=0

Inject Touch Events

AT+CTSA=EVENT,X,Y

20

LG
LVE-SMP-18001
Severity: High

Samsung
Security Updates
issued

Baseband Processors
• Basebands implement multiple generations of

3GPP (and, for now, 3GPP2) cellular standards GSM WCDMA

NRLTE Baseband

IPC

Application
Processor

321

Why basebands?
• Basebands implement multiple generations of

3GPP (and, for now, 3GPP2) cellular standards
• More standards → more implementation bugs

GSM WCDMA

NRLTE Baseband

IPC

Application
Processor

322

Why basebands?
• Basebands implement multiple generations of

3GPP (and, for now, 3GPP2) cellular standards

•

• More standards → more implementation bugs

More bugs → more security vulnerabilities

GSM WCDMA

NRLTE Baseband

IPC

Application
Processor

323

Why basebands?
• Basebands implement multiple generations of

3GPP (and, for now, 3GPP2) cellular standards

•

•

• More standards → more implementation bugs

More bugs → more security vulnerabilities

More vulnerabilities means more exploitable bugs

GSM WCDMA

NRLTE Baseband

IPC

Application
Processor

324

Why basebands?
• Basebands implement multiple generations of

3GPP (and, for now, 3GPP2) cellular standards

•

•

• More standards → more implementation bugs

More bugs → more security vulnerabilities

More vulnerabilities means more exploitable bugs
• Today, basebands are comparatively “easier”

targets.
Android/iOS userspace, kernel, and browsers
are hard targets to exploit
• But baseband functionality has been largely

hidden

GSM WCDMA

NRLTE Baseband

Application
Processor

IPC

325

Auditing basebands without source code

• Firmware for basebands is
shipped as a binary of a certain
CPU architecture

426

Auditing basebands without source code

• Firmware for basebands is shipped as
a binary of a certain CPU architecture
• Samsung Exynos - ARM Cortex-R / A

427

Auditing basebands without source code

• Firmware for basebands is shipped as
a binary of a certain CPU architecture

•

• Samsung Exynos - ARM Cortex-R / A
Qualcomm - Hexagon DSP

428

Auditing basebands without source code

• Firmware for basebands is shipped as
a binary of a certain CPU architecture

•

•

• Samsung Exynos - ARM Cortex-R / A
Qualcomm - Hexagon DSP
MediaTek - MIPS16e2 / nanoMIPS

429

Auditing basebands without source code

• Firmware for basebands is shipped as
a binary of a certain CPU architecture

•

•

• Samsung Exynos - ARM Cortex-R / A
Qualcomm - Hexagon DSP
MediaTek - MIPS16e2 / nanoMIPS

• Using a disassembler allows us to recover
program structures from machine code

430

Baseband Testing Strategies

Over-the-air testing

5

Binary Static Analysis Emulation

31

Baseband Testing Strategies

Over-the-air testing
Manual & non–deterministic

Lack of crash details

5

Binary Static Analysis Emulation

32

Baseband Testing Strategies

Over-the-air testing
Manual & non–deterministic

Lack of crash details

5

Binary Static Analysis Emulation

Many complex protocols and
firmware versions to analyze

33

Baseband Testing Strategies

Over-the-air testing
Manual & non–deterministic

Lack of crash details

Binary Static Analysis Emulation

Many complex protocols and
firmware versions to analyze

534

• FirmWire is the first dynamic analysis platform
to support emulating Samsung and MediaTek
baseband firmware from boot
Built on PANDA (QEMU derivative) and
allows for binary-only, coverage-guided
fuzzing and memory inspection
Mostly written in Python with Avatar2 as an
underlying framework

•

•

/ / (+) _ _ . -- . . - . | | (+) _ _ _ _\ \
\ / \ | _ | | | ' _ | ' \ \ / \ / /

. - .
| | ' _ / -_) / \ /

' - ' ' - | _ | | | _ | | _ | _ | _ \ _ / \ _ / | | _ | \ | - ' ' - '
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6



FirmWire Features
• It supports multiple platforms, 

chipsets, and phone models through 
vendor plugins

• MTK: support for MIPS16e2
• Shannon: support for ARM 

Cortex-R

• It offers cross-platform RTOS 
introspection and task injection

Used to find multiple over-the-air 
triggerable bugs in GSM and LTE 
implementations

•

Vendor A

Firmware 
Loader

Pattern 
DB

SoC

Pattern 
Offsets

Vendor B

1011011
10000111
11101001
p0u0s1h 0{1r10,0l0r}
ldr  r1 ,  [sp] 
b0l1x0r011111

Binary 
Firmware

Vendor Plugins

CPU
Core

Memory 
Regions

Peripheral Slots

FIRMWIRE Interface

ModKit

Memory 
Hooks 

Debugger

Crash 
Cases

GSM

LTE

Injected 
Analysis

RTOS
Boundary

Emulation Core

736



FirmWire Features

Vendor A

Firmware 
Loader

Pattern 
DB

SoC

Pattern 
Offsets

Vendor B

1011011
10000111
11101001
p0u0s1h 0{1r10,0l0r}
ldr  r1 ,  [sp] 
b0l1x0r011111

Binary 
Firmware

Vendor Plugins

CPU
Core

Memory 
Regions

Peripheral Slots

FIRMWIRE Interface

ModKit

Memory 
Hooks 

Debugger

Crash 
Cases

GSM

LTE

Injected 
Analysis

RTOS
Boundary

Emulation Core

1

7

2

• It supports multiple platforms, 
chipsets, and phone models through 
vendor plugins

• MTK: support for MIPS16e2
• Shannon: support for ARM 

Cortex-R

• It offers cross-platform RTOS 
introspection and task injection

Used to find multiple over-the-air 
triggerable bugs in GSM and LTE 
implementations

•

37



Vendor Plugin: PatternDB

Pattern := {
name := "BootTable" 
pattern := [
# Search for two stable 4-byte 
values "00008004 200c0000”,
# Fuzzy pattern for other 
images "00000004 ????0100"

]
required := true # Fail boot if not 
found # Process the found table and 
extract post_lookup := 
parse_memory_table
# Adjust found address 
offset := -0x14
# Make sure it’s 4 byte aligned 
align := 4

}

Pattern 
DB

8

FindPattern(“BootTable”, [FirmwareBytes]) → Offset

38



Vendor Plugin: PatternDB

Pattern := {
name := "BootTable" 
pattern := [
# Search for two stable 4-byte 
values "00008004 200c0000”,
# Fuzzy pattern for other 
images "00000004 ????0100"

]
required := true # Fail boot if not 
found # Process the found table and 
extract post_lookup := 
parse_memory_table
# Adjust found address 
offset := -0x14
# Make sure it’s 4 byte aligned 
align := 4

}

Vendor # Patterns

Samsung 18

MediaTek 9

Pattern 
DB

8

FindPattern(“BootTable”, [FirmwareBytes]) → Offset

39



Vendor Plugin: Multiple SoCs

9

from firmwire.peripherals import *

class VendorBaseSOC: 
common_peripherals = [ 
SOCPeripheral(UARTPeripheral,

base=0x84000000, 
size=0x1000)

]

class SOC123(VendorBaseSOC): 
name = "SOC123"
# SoC specific peripherals 
peripherals = [
SOCPeripheral(PMICPeripheral, 
base=0x80000000, 
size=0x100)

]
# SoC specific attributes 
CHIP_ID = 0x01230000 
SOC_BASE = 0x82000000
TIMER_BASE = SOC_BASE + 0x8000

40



Vendor Plugin: Multiple SoCs

9

Vendor Galaxy Model Chipset #SLoC

Samsung

S7/S7 Edge S335AP 25

S8/S8+ S355AP 29

S9 S360AP 33

S10/S10e S5000AP 25

MediaTek
A10s MT6762 14

A41 MT6768 12

from firmwire.peripherals import *

class VendorBaseSOC: 
common_peripherals = [ 
SOCPeripheral(UARTPeripheral,

base=0x84000000, 
size=0x1000)

]

class SOC123(VendorBaseSOC): 
name = "SOC123"
# SoC specific peripherals 
peripherals = [
SOCPeripheral(PMICPeripheral, 
base=0x80000000, 
size=0x100)

]
# SoC specific attributes 
CHIP_ID = 0x01230000 
SOC_BASE = 0x82000000
TIMER_BASE = SOC_BASE + 0x8000

41



Modifying basebands with Task Injection

• To test protocols, fuzzing harnesses 
are compiled and injected into the 
modem’s memory

The harnesses reuse the existing 
modem APIs found using 
patterns to send create tasks and 
send fuzzing inputs towards 
targeted tasks

•
Dynamic 

Linker

Pattern 
DB

Pattern 
Offsets

fuzz.c

hello.c

10000111
11101001
00101000

Cross-Compiler

mod.elf

glink.c

Symbols 
Requested

MODKIT_FUNCTION_SYMBOL(...)
101101

Resolved
Symbols

Inject Task

Mod 
Kit

HELLO FUZZ GLINK

Baseband RTOS

10



Fuzzing Campaigns

13

• We built 4 fuzzing harnesses and used coverage-guided 
fuzz testing (AFL++)

43



Fuzzing Campaigns

13

• We built 4 fuzzing harnesses and used coverage-guided 
fuzz testing (AFL++)
• Samsung: LTE RRC, GSM SM, GSM CC

44



Fuzzing Campaigns

13

• We built 4 fuzzing harnesses and used coverage-guided 
fuzz testing (AFL++)
• Samsung: LTE RRC, GSM SM, GSM CC
• MediaTek: LTE RRC

45



Fuzzing Campaigns

13

• We built 4 fuzzing harnesses and used coverage-guided 
fuzz testing (AFL++)
• Samsung: LTE RRC, GSM SM, GSM CC
• MediaTek: LTE RRC

• NAS - we targeted the decoders for SM and CC

46



Fuzzing Campaigns

13

• We built 4 fuzzing harnesses and used coverage-guided 
fuzz testing (AFL++)
• Samsung: LTE RRC, GSM SM, GSM CC
• MediaTek: LTE RRC

• NAS - we targeted the decoders for SM and CC
RRC - we targeted the ASN.1 decoders for BCCH/DCCH messages•

47



2G Call Control (CC)
•

•

2G & 3G circuit switched (CS) calling uses "Call Control” (CC) 
messages CC SETUP is sent from the network ⇒ mobile device

The packet is made up of Information Elements (IEs)•

14



Our fuzzed CC message
53 - Protocol discriminator (Samsung specific) 

Should be PD = 3 for CC
05 - CC SETUP IEI

04 - Bearer Capabilities IE I
30 - Bearer Capabilities length (ignored)
30 30 30 30 30 30 30 30 30 30 30 30 30 30

1c -  Faci l i ty IE I
30 -  Faci l i ty length
a1 -  Faci l i ty component type=INVOKE

- Bearer IE

1549



Our fuzzed CC message
53 - Protocol discriminator (Samsung specific) 

 Should be PD = 3 for CC
05 – CC SETUP IEI

04 - Bearer Capabilities IEI
30 - Bearer Capabilities length (ignored)
30 30 30 30 30 30 30 30 30 30 30 30 30 30 - Bearer IE

1c -  Faci l i ty IE I
30 -  Faci l i ty length
a1 -  Faci l i ty component type=INVOKE

Facility ASN.1 
decoder goes out of 

control!

1550



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

51



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

• LTE RRC - 2 critical, and 1 high

52



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

•

• LTE RRC - 2 critical, and 1 high

GSM CC - 1 critical

53



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

•

•

• LTE RRC - 2 critical, and 1 high

GSM CC - 1 critical

GSM SM (ground-truth)

54



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

•

•

• Ratings given by Samsung

• LTE RRC - 2 critical, and 1 high

GSM CC - 1 critical

GSM SM (ground-truth)

55



Fuzzing results

16

• Discovered 7 crashes, 4 of which were previously 
unknown

•

•

• Ratings given by Samsung
Highest CVE - CVE-2020-25279 (9.8 critical, CC 
SETUP)

•

• LTE RRC - 2 critical, and 1 high

GSM CC - 1 critical

GSM SM (ground-truth)

56



Fuzzing results
• Discovered 7 crashes, 4 of which were previously 

unknown

•

•

• Ratings given by Samsung
Highest CVE - CVE-2020-25279 (9.8 critical, CC 
SETUP)

•

See paper for 
more details

16

• LTE RRC - 2 critical, and 1 high

GSM CC - 1 critical

GSM SM (ground-truth)

57



OTA Crash Reproduction

1758



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations

1759



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

•

1760



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

•

•

1761



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

• Modified the RRCConnectionReconfiguration encoder to 
instead throw the fuzzed RRC packets

•

•

1762



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

• Modified the RRCConnectionReconfiguration encoder to 
instead throw the fuzzed RRC packets

GSM (YateBTS)

•

•

•

1763



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

• Modified the RRCConnectionReconfiguration encoder to 
instead throw the fuzzed RRC packets

GSM (YateBTS)

• SM - Changed the Protocol Configuration Options 
(PCO) encoder

•

•

•

1764



OTA Crash Reproduction
• We replayed crashing fuzz inputs over-the-air by modifying 

open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

• Modified the RRCConnectionReconfiguration encoder to 
instead throw the fuzzed RRC packets

GSM (YateBTS)

• SM - Changed the Protocol Configuration Options 
(PCO) encoder

• CC - Changed the Call Setup encoder and initiated a call

•

•

•

1765



OTA Crash Reproduction
•

•

•

•

We replayed crashing fuzz inputs over-the-air by modifying 
open source base stations
No SIM credentials were required, making all attacks pre-
authentication

LTE RRC (OpenLTE)

• Modified the RRCConnectionReconfiguration encoder to 
instead throw the fuzzed RRC packets

GSM (YateBTS)

• SM - Changed the Protocol Configuration Options 
(PCO) encoder

• CC - Changed the Call Setup encoder and initiated a call

• The basebands crashed with each message

1766



Scaling FirmWire

Collected 
360 firmware 

updates 
(2016 - 2021)

2067



Scalability Testing

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

2068



Scalability Testing

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

Not every firmware 
update changes 

the modem

2069



Scalability Testing

213 boot with 
FIRMWIRECollected 

360 firmware 
updates 

(2016 - 2021)

229 unique modem 
firmware

131 duplicates

16 fail to boot

Not every firmware 
update changes 

the modem

2070



Scalability Testing

213 boot with 
FIRMWIRE

Fidelity: boot blocked 
on timer expiry or 

waiting for peripheral 
return values

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

16 fail to boot

Not every firmware 
update changes 

the modem

2071



Scalability Testing

213 boot with 
FIRMWIRE

Fidelity: boot blocked 
on timer expiry or 

waiting for peripheral 
return values

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

16 fail to boot

Not every firmware 
update changes 

the modem

2072



Scalability Testing

A41 
12

A10s 
12

S10/S10e 
59

S9 
28

S8/S8+ 
49

S7/S7e 
45

213 boot with 
FIRMWIRE

Fidelity: boot blocked 
on timer expiry or 

waiting for peripheral 
return values

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

16 fail to boot

Not every firmware 
update changes 

the modem

20

Booting firmware by model

73



Scalability Testing

A41 
12

A10s 
12

S10/S10e 
59

S9 
28

S8/S8+ 
49

S7/S7e 
45

213 boot with 
FIRMWIRE

Fidelity: boot blocked 
on timer expiry or 

waiting for peripheral 
return values

Collected 
360 firmware 

updates 
(2016 - 2021)

229 unique modem 
firmware

131 duplicates

16 fail to boot

Not every firmware 
update changes 

the modem

20

Yes. FIRMWIRE boots 213 unique 
firmware across two platforms and six 

models with no manual intervention

Booting firmware by model

74



Samsung Patch Timeline

2175



Samsung Patch Timeline

21

Firmware 
release date

76



Samsung Patch Timeline

Firmware 
release date

Phone Models

2177



Samsung Patch Timeline

Crashing Input

Firmware 
release date

Phone Models

2178



Each dot is a 
firmware image

Samsung Patch Timeline

Crashing Input

Firmware 
release date

Phone Models

2179



Samsung Patch Timeline

21

Previously known SM 
bug patched for good

80



Samsung Patch Timeline

CC#1 crashes 
on all models

2181



}

}

}

But RRC bugs 
don’t affect S8

21

Samsung Patch Timeline

82



RRC#1 missing 
patch propagation?

Samsung Patch Timeline

2183



FIRMWIRE’s scalability enables long-term 
insights into baseband health and security

21

Samsung Patch Timeline

84



FirmWire Outcomes
Released on GitHub – currently over 600 stars
Actively maintained (thanks Marius!)

85

github.com/FirmWire/ 
FirmWire

Samsung Rewards Program Hall of Fame 2021
#4 overall of all security researchers

Finalist, Best Cybersecurity Research, 2022



• Remaining 2G/3G CS messages, EMM, ESM, 5GMM,5GSM, etc. 
RR/RRC - CSN.1 decoding and further ASN.1 coverage SMSPP
IP core of modems, IP services in modems (TLS,HTTP, DNS) 
IMS - SIP, RTP, RTCP, SDP, etc.

Remaining Attack Surface

18

•

• We only tested a very small fraction of protocols. Most of the time 
was spent on building a system that others could use
Potential next targets

•

•

•

86



AT Commands Revisited

1887

• Previous work – we know some AT commands are executed by the 
baseband

• Can we get more insights by using FirmWire to fuzz the AT 
distributor directly from the remote interface tasks?

• Fuzz protocol handlers and triage recorded
crashes, look for evidence of AT command
invocation from the logs



AT Commands Revisited

1888

• Seed selection:
•   1. AT commands and crashing inputs as seeds
•   2. ”Multi-message fuzzing”: sequence of 10 messages send to a 

handler task (initialization faster than with reverse engineering)
•   3. Code coverage guiding towards AT invocation task
•   4. Concolic engine 

(SymQEMU)



AT Commands Revisited

1889

• Early findings:
• 3 unique crashes when fuzzing LTE SAE L3 task (shown below)
• 3 unique crashes when fuzzing PDN manager task
• SMS task results in unique AT command invocation involved in a 

series of crashes
• 328 unique crashes when

directly fuzzing the AT
invocation task 



What Have We Learned?

23

• New 3GPP releases ensure that new, less tested, code is always been 
written. Basebands support 30+ years of standards. Both of these 
are great for security researchers (large attack surface).

• Many critical baseband vulnerabilities are the result of memory 
corruption. Memory safety is key.

• Type-safe languages?

• Baseband mitigations (ASLR, NX/DEP/XN, CFI, StackGuard)? 

• Time for open-source basebands? Foster a larger community?

90



Change the Focus 

23

• Much of the recent research has focused on the device
• What about if we consider examining the network instead?

91

• Code-centric approach to understanding the core



Collaborators

Patrick Traynor

92

Grant Hernandez Dave (Jing) Tian Marius Muench Dominik Maier

Tobias 
Scharnowski

Alyssa Milburn Tyler Tucker



Collaborators/Acknowledgements
• Pirouz Naghavi
• Raghav Gupta
• Saijayanth Chidirala
• Vanessa Frost
• Sri Chandra Devarakonda
• Lee Harrison
• Mike Grace

• Funding acknowledgements:
• National Science Foundation CNS-1815883
• Office of Naval Research ONR-OTA N00014-20-1-2205
• Semiconductor Research Corporation
• Air Force Office of Scientific Research
• Dutch Research Council NOW 628.001.0303 

(“TROPICS”)

93

• Jigar Patel
• Prakhar Saxena
• Yash Mundra
• Christie Ruales
• Hayawardh Vijaykumar
• Amir Rahmati



Conclusion
• The closed nature of telephony networks and 

device has made them exciting areas for hacking 
over the past 50 years

• Opening the black boxes of implementations and 
deployments can ensure safer and more secure 
communications for everyone

• Lots of technical challenges for the community!

github.com/FirmWire/ 
FirmWire

25

Contact:
butler@ufl.edu
https://fics.institute.ufl.edu

94

https://atcommands.org

mailto:butler@ufl.edu

